the context assumed is "derivative as the tangent gradient".
0/0 is not a fraction! zero is not a number!
When calculating a derivative, we must find a way to "cancel" the infinitesimally small quantity in the denominator, typically for instance by locating it as a factor in the numerator.
As an example, what is {x(squared)-9}/{x-3} when x=3?
It is the fraction X+3 written in a deceptive way.
The trouble with 0/0 is this...
How many zeroes is the numerator and how many zeroes is the denominator?
since 0(1)=0(2)=0(3)=0(4), keep doing nothing and end up with nothing.
It's undefined because we have lost the details of how many times the denominator is the numerator.
Even though derivatives are calculated with limits, since we are dealing with tangents to a single point, not a line through two points... if the limit exists the derivative is a line gradient which is a quotient, no matter how we refer to it.
It works where it is applicable and not where it is not applicable. If the partial derivatives are across different unrelated variables it won't work!
We cannot divide miles by hours and give our answer in km/hour without converting correctly first. Slider's analysis is incomplete. he needs to state more clearly the relationship between x, y and z.
When performing
partial differentiation, you are holding one of these constant. This is different to finding the derivative of a function of a function (say x).
Mathematics has many areas that seem the same but we may need to be more specific.
For instance CosA is either the ratio of two sides in a right angled triangle or the x co-ordinate of a point on the circumference of a unit radius circle, computed using the right-angled triangle.
In the context of the Chain Rule of differentiation, we are only "multiplying by 1" in a way that suits us, similarly to how we combine fractions with different denominators. If the word "derivative" means something else in a slightly different context, we are playing a different game of football.
When calculating the volume of a cube, the variables are "unrelated". Width, height and depth are "independent" unless restrictions are placed on the volume. Under these circumstances dx, dy and dz may not have any interrelationship as they are infinitesimal lengths independent of each other.
Partial derivatives are "partial", used in situations where the function depends on more than one "independent" variables. it's a different ball game. For the variables that are independent, there is no derivative as we cannot draw of a graph of one versus the other.
In Slider's analysis he obtains three partial derivatives multiplied together to get -1 when we'd expect 1 if we were dealing with derivatives. This is because he is calculating partial derivatives, not derivatives, by holding a variable constant.
A partial derivative is not a complete derivative. It is a slight redefinition of a derivative to deal with multivariable situations, a variation of a context.