Accelerating blocks connected by a spring

AI Thread Summary
Two 3.0 kg blocks on a frictionless surface are connected by a spring with a spring constant of 1000 N/m, and a horizontal force F is applied to the left block. At t=0, both blocks have a velocity of 3.2 m/s, and during the next second, the spring compresses by 1.5 cm. The discussion revolves around calculating the magnitude of force F while considering conservation of momentum and energy, but the challenge lies in determining the final velocities of the blocks. The attempt includes setting up equations for initial and final energy states, but the user struggles with multiple unknowns and seeks clarification on the role of the center of mass. Ultimately, the user concludes that the problem is solvable using conservation principles and arrives at a force value of 30 N.
XanziBar
Messages
46
Reaction score
0

Homework Statement


Two 3.0 kg blocks on a level frictionless surface are connected by a spring with spring constant 1000 N/m. The left block is pushed by a horizonal force F to the right. At time t=0 seconds, both blocks are moving with velocity 3.2 m/s to the right. For the next second, the spring's compression is a constant 1.5 cm. What is the magnitude of F during that 1.0 s interval

Homework Equations


KE=.5*m*v^2
SPE=.5*k*(delta x)^2
F=(delta p)*(delta t)
change in energy = force * distance

The Attempt at a Solution



I tried to setup the following: Ei= .5*6kg*3.2^2
and Ef=Ei+F*d=.5*m*v1^2+.5*m*v2^2 +.5*k * (delta x)^2
Now I know everything about the spring potential energy at the end and the total energy (kinetic) at the beginning. But I guess the biggest problem I'm having is that I do not know the final velocities of either of the 2 blocks. I tried using conservation of momentum to relate them but got a much bigger mess with no obvious way to simplify. Would considering the center of mass of the 2 block system help? If I have the acceleration of the center of mass can I do something with that? Is this even the right approach at all? No matter what I do I get like 1 equation with 3 unknowns! Please help.
 
Physics news on Phys.org
So... the change in momentum, F*(delta t)=m*v1f+m*v2f-2*m*v then that's a relationship between v1f and v2f in terms of the force (which is what I'm looking for). But with (1/2)*m*v1f^2+1/2*m*v2f^2+1/2*k*(delta x)^2=m*v^2+F*d that still leaves me with an unknown and no equation. Also, does the distance represent the distance that the center of mass travels?

Kind of struggling here, any ideas anyone?
 
F=-kx ?
 
No, the force on the spring is not the same as on the block. X1=Vo+a1/2 X2=Vo+a2/2.

a1-a2=2*1.5 cm
F-kx=ma1
kx-ma2
F=m*(a1+a2)=3*(10.03)

==>> a2=5 m/s^2
a1=5.03 m/2^2.

Anyway, the forces are not the same but this problem should be do-able with conservation of energy/momentum.
 
I just drew an fbd and solved and got 30n.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top