Age of Universe @ 1 MeV, 1 GeV & 1014 GeV: Calculation

  • Thread starter Thread starter Ailar
  • Start date Start date
  • Tags Tags
    Temperature Time
Ailar
Messages
2
Reaction score
0
Assume that we live in a Robertson-Walker universe with matter, radiation and curvature. The present mass density is ρm = 3Ω0H20/(8πG), where H0 = 100 h km s-1 Mpc-1 and Ω0(1+ρr,0/ρm;0) ≤ 1 (i.e., k ≤ 0). The present radiation temperature is T0 = 2.725 K.
Assume that only photons, with present temperature T0 = 2.725K contribute to the radiation; ignore neutrinos in this problem.
How old was the universe when the radiation temperature was 1 MeV? 1GeV?
1014 GeV? (Hint: you need g*, the effective number of relativistic spin states contributing to the energy density. At 1 GeV g* = 61.75 and at 1014 GeV, g* = 106.75 without supersymmetry or double this with SUSY.)
Thanks so much!
 
Physics news on Phys.org
This looks like a homework question, as such I am moving to the relevant homework forum. What attempts have you made the answer the question?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top