Alternate Solution to Conservation of Momentum Problem

AI Thread Summary
The discussion addresses a problem involving a collision between three vehicles and the use of energy conservation to find the final speeds and direction after the collision. The original poster's calculations yielded results that differed from the expected solution, leading to confusion about the method. Key insights reveal that kinetic energy is not conserved in collisions, while momentum is always conserved unless an external force acts on the system. Participants emphasize the importance of using momentum conservation for collision problems rather than energy conservation. This clarification helps resolve the poster's uncertainty regarding their approach.
aboakye
Messages
2
Reaction score
0
I solved the following problem using Energy instead of conservation of momentum. Unfortunately, my answer is different from the expected solution. I'm not sure why my method doesn't work.

Any insights would be appreciated!

Problem:
A 2000 kg truck is traveling east through an intersection at 2 m/s when it is hit simultaneously from the side and the rear. One car is a 1000 kg compact traveling north at 5 m/s. The other car is a 1500 kg midsize traveling east at 10 m/s. The three vehicles become entangled and slide at one body. What are their speeds and direction just after the collision?

My Attempt:
Energy east/x: (1/2)*1500*100 + (1/2)*2000*4 = 79 kJ
Energy north/y: (1/2)*1000*25 = 12.5 kJ

Final speed: \sqrt{2.2^{2} + 5.92^{2} } = 6.32 m/s
@Angle: tan^{-1}(2.2/5.92) = 20.4°

Solution:
mvxfinal = 1500*100 + 2000*4 solve for v in x-dir
mvyfinal = 1000*5 solve for v in y-dir
 
Physics news on Phys.org
aboakye said:
I solved the following problem using Energy instead of conservation of momentum. Unfortunately, my answer is different from the expected solution. I'm not sure why my method doesn't work.
The vehicles become entangled. Kinetic energy is not conserved! (But momentum is.)
 
welcome to pf!

hi aboakye! welcome to pf! :smile:

energy is never conserved in a collision unless the question says it is! :wink:

(but momentum is always conserved in a collision, in any direction in which there is no external impulse)
 
Thanks Doc Al & tiny-tim!

That clarifies it
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top