Sure, historically Biot-Savart and Ampere have deduced their equations from experiments. Maxwell has found that the corresponding equation, which reads in modern form
$$\vec{\nabla} \times \vec{B}=\frac{1}{c} \vec{j}$$
cannot be correct, supposed electric charge is conserved, i.e., the continuity equation
$$\partial_t \rho + \vec{\nabla} \cdot \vec{j}=0$$
strictly holds.
To get matters right, he realized that this problem is solved by including what he called (for reasons which are obsolete today) the "displacement current",
$$\vec{\nabla} \times \vec{B}=\frac{1}{c} (\vec{j}+\partial_t \vec{E}),$$
because then taking the divergence of this equation leads, together with Gauss's Law for the electric field,
$$\vec{\nabla} \cdot \vec{E}=\rho.$$
Some good books on classical optics is
A. Sommerfeld, Lectures on Theoretical Physics, vol. 4, Optics, Academic Press (1954)
G. R. Fowles, Introduction to modern optics, Dover (1989)
M. Born, E. Wolf, Principles of optics, Cambridge Univsersity Press (1999)