Analytic form of eigenpairs for a special matrix

  • Thread starter Thread starter robertsj
  • Start date Start date
  • Tags Tags
    Form Matrix
robertsj
Messages
7
Reaction score
1
Hi all,

I have a physically-motivated algorithm for which I'm trying to flesh out some basic properties analytically. In one case, I end up with a matrix of the following form:

<br /> \left [\begin{array}{ccccccccc}<br /> 0 &amp; &amp; &amp; &amp; &amp; &amp; &amp; &amp; \\<br /> &amp; 0 &amp; R &amp; T &amp; &amp; &amp; &amp; &amp; \\<br /> T &amp; R &amp; 0 &amp; &amp; &amp; &amp; &amp; &amp; \\<br /> &amp; &amp; &amp; 0 &amp; R &amp; T &amp; &amp; &amp; \\<br /> &amp; &amp; T &amp; R &amp; 0 &amp; &amp; &amp; &amp; \\<br /> &amp; &amp; &amp; &amp; &amp; \ddots &amp; &amp; &amp; \\<br /> &amp; &amp; &amp; &amp; &amp; &amp; 0 &amp; R &amp; T \\<br /> &amp; &amp; &amp; &amp; &amp; T &amp; R &amp; 0 &amp; \\<br /> &amp; &amp; &amp; &amp; &amp; &amp; &amp; &amp; 0 \\<br /> \end{array} \right ] <br />

I can compute the the fundamental mode analytically based on the physics of the problem, but I haven't been able to generate higher order modes. I'm most interested in the eigenvalues. Any suggestions? Has someone done this?
 
Physics news on Phys.org
Back
Top