player1_1_1
- 112
- 0
Homework Statement
integral: \int\limits_C\frac{\mbox{d}z}{z} where C is circle of radius 2 centered at 0 oriented counterclockwise
Homework Equations
The Attempt at a Solution
I am going to parameter this: \gamma=2\cos t+2i\sin t,\ \gamma^\prime=-2\sin t+2i\cos t,\ t\in[0,2\pi], then z=x+iy=2\cos t+2i\sin t and integral will look like this:
\int\limits^{2\pi}_0\frac{-2\sin t+2i\cos t}{2\cos t+2i\sin t}\mbox{d}t=\int\limits^{2\pi}_0\frac{i\left(i\cos t-\sin t\right)}{i\cos t-\sin t}\mbox{d}t=2\pi i
is it correct? and another question, what is counterclockwise? thanks for answer