Angle of Deflection for a Moving Charge Passing a Fixed Charge

Graham1
Messages
4
Reaction score
0

Homework Statement



A Particle of mass m and chargeq oves at high speed along the x axis. It is initially near x=-infinity and it ends up near x=+infinity. A second charge Q is fixed at the point x=0, y=-d. As the moving charge passes the stationary chrge, its x component o velocity does not change appreciably, but it acquires a small velocity in the y direction. Determine the angle angle through which the moving charge is deflected. suggestion: The integral you encounter in determining v_y can be evaluated by applying Gauss's law to a long cylinder of radius D, centred on the stationary charge.


Homework Equations



\Phi = ∮EdA


The Attempt at a Solution



So Far, I have managed to get to E=Q/2\pimd(\epsilon_0)
and ended up with a= Qq/(2\pimd(\epsilon_0)
by using electric force and F=ma equations

I know the answer I should get is \Theta=Qq/(2\pimd(\epsilon_0}[/tex)v^{2}

can anybody help me with the method between these two points, or correct me if my method is wrong?
 
Physics news on Phys.org
How did you manage to bring mass into the formula for electric field?
Anyway, your calculation of electric field is wrong, since E is not constant. What you need in this excercise is an integral of Er(radial component of electric field) over x, which can be easily obtained from Gauss law (since the same integral also appears in Gauss law).
 
getting mass into the equation was easy enough - use the field E to get a force F.
then simply take F=ma and rearrange
 
Physical units are a usefull thing. Especially if they are the same on both sides of the equation.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top