IHateMayonnaise
- 87
- 0
Homework Statement
This is problem 18.1 from Merzbacher.
"The hamiltonian of a rigid rotator in a magnetic field perpendicular to the x-axis is of the form H=AL^2+BL_z+CL_y, if the term \that is quadratic in the field is neglected. Obtain the exact energy eigenvalues and eigenfunctions of the hamiltonian."
Homework Equations
L^2Y_l^m(\theta,\phi)=l(l+1)\hbar^2 Y_l^m(\theta,\phi)
L_ZY_l^m(\theta,\phi)=m\hbarY_l^m(\theta,\phi)
L_Y Y_l^m(\theta,\phi)=\frac{1}{2\imath}(L_+-L_-)Y_l^m(\theta,\phi)
L_+ Y_l^m(\theta,\phi)=\sqrt{l(l+1)-m(m+1)}\hbar Y_l^{m+1}(\theta,\phi)
L_- Y_l^m(\theta,\phi)=\sqrt{l(l+1)-m(m-1)}\hbar Y_l^{m-1}(\theta,\phi)
The Attempt at a Solution
For the first two parts of the hamiltonian the answer is easy:
E=Al(l+1)\hbar^2+Bm\hbar
But what is the eigenvalue for the last part (of L_Y)? Is it just
<br /> <br /> C\left[\frac{\sqrt{l(l+1)-m(m+1)}\hbar-\sqrt{l(l+1)-m(m-1)}\hbar}{2\imath}<br /> \right]<br />
?
And for the eigenfunctions: for the first two parts of H it is just the spherical harmonics, but for the last part is it both
Y_l^{m+1}(\theta,\phi)
and
Y_l^{m-1}(\theta,\phi)
?
Many days without sleep. THis is an easy question I know, please don't judge me I am sleep deprived :)
IHateMayonnaise
Last edited: