Another integral problem that really is a problem (for me )?

  • Thread starter Thread starter mooncrater
  • Start date Start date
  • Tags Tags
    Integral
mooncrater
Messages
215
Reaction score
18
The question is an integral that has been attached .
Related equations :
N\a
An attempt to the solution :
Attached.
 

Attachments

  • 1424493809764.jpg
    1424493809764.jpg
    16 KB · Views: 424
  • 1424493984965.jpg
    1424493984965.jpg
    9.1 KB · Views: 414
Physics news on Phys.org
HINT:use the formula cos(x)=cos(x/2)^2-sin(x/2)^2 in denominator.And then try again.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top