Antiderivative of 1/x: ln(x) or ln(|x|)?

Alettix
Messages
177
Reaction score
11

Homework Statement


Calculate the integral:
## \int_{a}^{b} \frac{1}{x} dx ##

Homework Equations


-

The Attempt at a Solution


In high school we learned that:
## \int_{a}^{b} \frac{1}{x} dx = ln(|x|) + C ##
because the logarithm of a negative number is undefined.

However, in my current maths course about complex numbers we leared to take the logarithms of negative numbers as well, using: ##ln(-x) = ln(x) + \pi i ##. With this extension, can we say:
## \int_{a}^{b} \frac{1}{x} dx = ln(x) + C ##
or is this still wrong?

Thank you very much!
 
Physics news on Phys.org
If ##a=b## the integral exists, trivially, and is equal to zero.
If ##a<0<b## the definite integral does not exist because the explosion at 0 makes the function not integrable over the interval ##[a,b]##.
If ##a<b=0## or ##0=a<b## is 0, the proper integral does not exist because ##\log 0## and ##\log|0|## are undefined. The improper integral doesn't exist either, since ##\lim_{x\to 0}\log x## and ##\lim_{x\to 0}\log |x|## do not exist.

If ##0<a<b## then the integral exists and both formulas give the same result, since on that range of integration ##|x|=x##.

If ##a<b<0##, again the integral exists and gives the same result from both formulas, because the constant ##\pi i## cancels out.

PS:
Alettix said:
With this extension, can we say:
## \int_{a}^{b} \frac{1}{x} dx = ln(x) + C ##
or is this still wrong?
For one-dimensional integration the integration constant ##C## should not be used in a definite integral. It is used in an indefinite integral, but always cancels out when one makes a definite integral (ie inserts lower and upper integration limits).
 
  • Like
Likes Alettix
@Alettix, please post problems involving integrals and other calculus topics in the Calculus & Beyond section, not the Precalc section where you posted this thread. I have moved your thread.
 
Alettix said:

Homework Statement


Calculate the integral:
## \int_{a}^{b} \frac{1}{x} dx ##

Homework Equations


-

The Attempt at a Solution


In high school we learned that:
## \int_{a}^{b} \frac{1}{x} dx = ln(|x|) + C ##
because the logarithm of a negative number is undefined.

However, in my current maths course about complex numbers we leared to take the logarithms of negative numbers as well, using: ##ln(-x) = ln(x) + \pi i ##. With this extension, can we say:
## \int_{a}^{b} \frac{1}{x} dx = ln(x) + C ##
or is this still wrong?

Thank you very much!

If a &lt; b &lt; 0 then <br /> \int_{a}^{b} \frac1x\,dx = \left[ \ln x \right]_{a}^{b} = \left[ \ln|x| + i\pi \right]_{a}^{b} = \ln|b| - \ln|a|, consistent with the first rule you were taught. Integrals where a &lt; 0 &lt; b are not defined due to the singularity at the origin.
 
  • Like
Likes Alettix
If we're talking about complex numbers, we have ##\ln b - \ln a##.
If we're talking about real numbers, we need to consider the undefined point we have at 0, so that ##a## and ##b## both have to be either positive, or negative.
Otherwise we have to get to more "tricks" to deal with the discontinuity.
Either way, ##\ln |x| + C## is a poor man's anti-derivative since the integration constant can be different on either side of ##0##.
 
Alettix said:

Homework Statement


Calculate the integral:
## \int_{a}^{b} \frac{1}{x} dx ##

Homework Equations


-

The Attempt at a Solution


In high school we learned that:
## \int_{a}^{b} \frac{1}{x} dx = ln(|x|) + C ##
because the logarithm of a negative number is undefined.

However, in my current maths course about complex numbers we leared to take the logarithms of negative numbers as well, using: ##ln(-x) = ln(x) + \pi i ##. With this extension, can we say:
## \int_{a}^{b} \frac{1}{x} dx = ln(x) + C ##
or is this still wrong?

Thank you very much!

I hope nobody in high school told you that formula, because you have ##a## and ##b## on one side but no ##a## or ##b## on the other side of the equation. That cannot be right.

Anyway, if ##0 < a < b##. then ##|x| = x## for any ##x## between ##a## and ##b##, so it makes no difference whether you use ##\ln |x|## or ##\ln x##. If ##a < b < 0## the integral ##\int_a^b dx/x## computes the (negative) area from ##x = a## to ##x = b## below the ##x##-axis and above the curve ##y = 1/x## (which lies below the axis). If you put ##t = -x## the integral becomes ##\int_{-a}^{-b} (-dt)/(-t)),## which equals ##\int_{|a|}^{|b|} dt/t = \ln |b| - \ln |a| < 0## because ##|b| < |a|##. That is as it should be.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top