Antiderivative of a Quartic Function

ohlhauc1
Messages
27
Reaction score
0

Homework Statement


I need to find information pertaining to the antiderivative of a function. At the moment, I just need help in finding part of the derivative: what is happening at the double root (on the derivative)

I am given a quartic function labelled f' with roots at: (-5,0), a double root at (-2,0), and (2,0). There are two local maximums at (0,3) and (-3.5, 3). There is a local minimum at (-2, 0). I need to find f, which I know must be a quintic function. The picture of the quartic that I am given looks like an upside down W.

Homework Equations



I am not given the equation of the quartic function.

The Attempt at a Solution



I know that for f (the quintic function), there is a minimum at x=-5 because of the root (on the quartic) and that there is a maximum at x=2 because of the root. I also know that there are two inflection points at x=-3.5 and x=0 because the derivative (quartic) has a maximum there.

I just need to determine what is present on the antiderivative at the double root at (-2,0) which is also a local maximum. According to the principles that I know, there should be a local maximum or minimum, and that it should be an inflection point on the antiderivative. However, whenever I attempt to draw the antiderivative I can fit both of those criteria on the graph. Could you help me determine what exactly the antiderivative looks like or behaves like at the point?
 
Last edited:
Physics news on Phys.org
ohlhauc1 said:


Homework Equations



I am not given the equation of the quartic function.

Yes actually, you are. You are told all 4 roots of a polynomial degree 4.

EG x^2+2x+1=(x+1)(x+1) Hence a double root at -1. We have the roots, work backwards. The equation is

f'(x)=(x+5)(x+2)^2(x-2). Expand and use the power rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top