Applying Lorentz transform to current 4 vector

Finch91
Messages
1
Reaction score
0

Homework Statement



Consider an infinite line of charge with density λ per unit length lying along the z-axis. If the line of charge is stationary in frame S, use the Lorentz transform to find the current and charge densities in a frame S' which is moving with velocity v parallel to the z-axis of S.


Homework Equations



4 current defined as

j_\mu = (J_1,J_2,J_3,c\rho)


The Attempt at a Solution



In S I find

j_\mu = (0,0,0,c\lambda)

then applying the Lorentz transform to find

j'_\mu = (-\gamma\beta c \lambda,0,0,\gamma c \lambda)

in S'

Is this correct?
 
Last edited:
Physics news on Phys.org
Hey, welcome to physicsforums!
It's almost correct. You have the correct answer if the charge was uniform over all space. (since you have put the constant lambda, the charge will spread the same over all space). What the question asked for was a charge distribution that is concentrated on the z axis. So which mathematical object can you use to represent this charge distribution?

Also, usually the charge is written as the zeroth component, and the current as the other 3, but I guess it is only convention, so it doesn't really matter. It just might be confusing when you look at other people's work.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top