Arbitrary travelling wave on string (griffiths 9.5)

  • Thread starter Thread starter DE7
  • Start date Start date
  • Tags Tags
    String Wave
DE7
Messages
8
Reaction score
0
hi all,

i'm in need of a little help with griffiths 9.5 (EM). the problem concerns a traveling wave of arbitrary shape on a string. the string consists of two strings with different mass densities tied together at z=0. given the arbitrary incoming wave, what are the transmitted and reflected waves?

i know i must impose continuity conditions on the wave and its derivatives at z=0. however, are these two equations enough to determine the problem? or should i decompose the incoming wave using Fourier series? I'm not too sure how to go about doing that...any hints?
 
Physics news on Phys.org
The problem of wave reflection and transmission is derived simply from the principle of continuity, so yes they are enough. Whether you decompose the wave or not into its fundamental harmonics is irrelevant to the reflected and transmitted wave magnitudes, which is usually the parameter of interest.

Reflection occurs when there is a change in propagating medium, such as air to glass, or string1 to string 2 for mechanical waves.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top