A sphere can be parametrized by spherical coordinates (with the exception of the two points at the polar axis):
$$\vec{x}(\vartheta,\varphi)=R \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix}.$$
The coordinate lines build a mesh, defining tangent vectors which span the surface-vector elements
$$\mathrm{d} \vec{F} = \mathrm{d} \vartheta \mathrm{d} \varphi \frac{\partial \vec{x}}{\partial \vartheta} \times \frac{\partial \vec{x}}{\partial \varphi} = R^2 \sin \vartheta \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix}.$$
The surface normal vectors are the unit vectors in direction of ##\vec{x}##, i.e.,
$$\vec{n} = \frac{\vec{x}}{|\vec{x}|}=\frac{\vec{x}}{R} = \begin{pmatrix} \sin \vartheta \cos \varphi \\ \sin \vartheta \sin \varphi \\ \cos \vartheta \end{pmatrix}.$$
To evaluate the surface of the sphere you just take the modulus of the surface vectors and integrate over ##\vartheta \in [0,\pi]##, ##\varphi \in [0,2 \pi]##:
$$S=\int_{0}^{\pi} \mathrm{d} \vartheta \int_0^{2 \pi} \mathrm{\varphi} R^2 \sin \vartheta=4 \pi R^2,$$
as it should be.
I'm still not sure, what all this has to do with your original question, where you look at a dyad (Kornecker product ##\vec{n} \otimes \vec{n}##), which is a 2nd-rank tensor by definition.