GTOM said:
Sorry but i really don't see why they are the same. I can still spin the wheels of a bicycle if i sit on it, and we levitate in zero G.
If you spin the bicycle wheel in zero G, you spin the other way. Angular momentum (zero in this case) is thus preserved.
GTOM said:
In case of bicycle i can apply external.force while i am still on the bike.
You cannot apply external force on the bicycle-with-you system. At best you can throw the bicycle away from yourself to get it to go somewhere and you somewhere else. Otherwise you stay put and maintain zero net momentum of both kinds.
Anyway, I'm glad NASA has engineered the air-tight bearing thing to the point where they're considering putting one up there. There's also the balance thing. I have a balanced spinning module and somebody goes through the center and ends up somewhere on the wheel where he wasn't before. Now the thing is out of balance and will put a continuous low-frequency vibration on the whole station. Somewhere there has to be a self-balancing mechanism that restores the center of gravity of the wheel back to its axis of rotation.
DaveC426913 said:
Sorry, is there some some reason the OP isn't simply using a gyroscope? or am I missing it?
A massive flywheel at the center of mass will do fine to impart ship rotation.
That's what my 2nd counter-rotating wheel did, adding useful mass (more living space) instead of wasting it on a gyro. Yes, either way it keeps the angular momentum at zero, allowing ship rotation (slowly) without expenditure of thrust, although it is unclear why such rotation is part of the flight plan.
DaveC426913 said:
I'm not sure what that has to do with a large gyroscope at the CoM of the ship to enable it to rotate.
The large gyroscope can be anywhere. Surely there is something more useful to have at the CoM point. It's job is to absorb angular momentum, and it can do that anywhere, including on the edge of spinning wheel, an improbable but not impossible place to put it.
DaveC426913 said:
It doesn't have to be just one section the ship. Tie two sections of the ship with a cable and have them spin about their CoM.
View attachment 269073
You're right that a wheel shape is totally unnecessary. But how do you apply thrust to the setup you have pictured there?
This would only be practical if your journey were mostly straight line, and not much maneuvering. You'd have to reel it in for maneuvering.
Reeling it in will make the tangential velocity of the end-modules stupid fast, raising the g-forces on the cables to the point where they'll break, not to mention killing everybody. Reeling it in doesn't dump the angular momentum.