Atwood Machine: Energy & Work Homework Soln

AI Thread Summary
The discussion revolves around solving an Atwood machine problem involving a 4.92-kg block on a ledge and a 2.46-kg hanging block, with a pulley that has mass and radius. The user initially struggled with the work done by forces and considered the tension in the string. They sought a simpler method to calculate the speed of the falling block after it descends 2.67 m. A suggestion was made to use energy conservation principles, which would simplify the calculations without needing to analyze acceleration details. The importance of accounting for the pulley’s mass in the energy conservation approach was also highlighted.
kchurchi
Messages
39
Reaction score
0

Homework Statement



An atwood machince has a m1 = 4.92-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m2 = 2.46-kg block.


The pulley is a uniform disk of radius 8.06 cm and mass 0.615 kg. Calculate the speed of the m2 = 2.46-kg block after it is released from rest and falls a distance of 2.67 m.

Homework Equations



Work = ∫F dot ds

ΔE = ΔKE(translation) = 1/2*m2*vf^2 - 1/2*m2*vi^2


The Attempt at a Solution


At first I assumed only the weight force was doing work on mass 2 but I got the wrong answer. Then I thought perhaps tension was also doing work on mass 2. In order to find the tension force, I need to find the torques acting on the pulley and the sum of the forces acting on mass 1. I can do all of this, however, I would like to know if there is an easier, less complex way to do this problem.
Thanks!
 
Physics news on Phys.org
You can use energy conservation, so you don't have to care about the details of the acceleration. Don't forget the pulley disk.
 
Thanks mfb!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top