How Does Changing Spring Constants Affect Mass Oscillation?

  • Thread starter Thread starter wripples
  • Start date Start date
AI Thread Summary
Changing the spring constant of one spring in a mass-spring system significantly affects the oscillation dynamics of the mass. When the right spring's constant is increased to 3k, the net force acting on the mass must be recalculated, leading to a differential equation that describes the motion. The initial conditions, including the mass's starting position and velocity, are crucial for determining the system's behavior. To solve the resulting differential equation, it's recommended to first find the new equilibrium position and then analyze motion around that point. This approach allows for the calculation of amplitude and frequency, ultimately providing a complete description of the oscillatory motion.
wripples
Messages
1
Reaction score
0

Homework Statement



So the problem is that you have a mass m connected to two springs, where each of the two springs is connected to a wall, as such:

|--------M--------|

Each spring first has a spring constant k and a equilibrium length L, and then when set up in the above configuration, M is 2L away from both walls (so both springs are stretched a length L from their equilibrium). Then the spring on the right has its spring constant instantaneously changed to 3k (instead of k), and the goal is to find the resulting function to describe the motion of M. We are to take its initial position to be 0 (so x(0) = 0).

2. The attempt at a solution

So my approach is to first set up the problem. First, take positive x to be displacement to the right. We have x(0) = 0, and since the right spring constant is supposed to instantaneously change to 3k, I assumed v(0) = 0. On the other hand, I'm not entirely sure that is right; perhaps I should solve for the acceleration at time t = 0 using the fact that both springs are stretched L past their equilibrium?

Afterwards, I try to find the net force. On the left, the spring with spring constant k has restoring force F_1 = -k(L+x), since it is already displaced by L to begin with, so it should already be acting with a force of -kL when we are at time t = 0, and stretching to the right (positive x) should increase the restoring force. Similarly, the force of the spring on the right is F_2 = -3k(-L+x); at the start, it should already have a force of magnitude 3kL pointing to the right, so it makes sense for x = 0, and as x increases (moves right), its restoring force should decrease.

Now, equating with F_2 - F_1 = F_net = ma, we have ma = 2kL - 4kx, which seems like its a particularly nasty differential equation to solve, due to the inhomogeneous term 2kL. Perhaps this is correct? And if so, how does one such solve a differential equation? I'm particularly rusty on doing that type of stuff.

Thanks!
 
Physics news on Phys.org
I suggest to calculate everything relative to the new equilibrium position.
You can find this position follows from F=0 (or a=0)
Then you know the solution for motion around the equilibrium. The initial position is L/2 from equilibrium (if your formula for acceleration is right) so the amplitude will be L/2. Find the frequency from the new net force. Use initial conditions to find initial phase.
Then you can add L/2 in order to shift back the origin in the middle.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top