Understanding Physics for the Beer Mug Problem

AI Thread Summary
A bartender slides a beer mug at 1.50 m/s off a frictionless bar that is 1.2 m tall, prompting a discussion on calculating the mug's speed and direction upon impact. The equations for horizontal and vertical velocity components are provided, but additional equations are needed to determine Vx and Vy at the moment of impact. The correct impact speed is identified as 5.08 m/s with a direction of θ = -72.8°. Participants are encouraged to consider the relationship between the sliding velocity and Vx without immediately resorting to equations. The discussion emphasizes understanding the physics behind projectile motion in a frictionless environment.
Let It Be
Messages
45
Reaction score
0
1. A bartender slides a beer mug at 1.50m/s towards a customer at the end of a frictionless bar that is 1.2m tall. the customer makes a grab for the mug and misses, and the mug sails of the end of the bar. What are the speed and direction of the mug at impact?


2. Vx=Vocosθ
Vy=Vosinθ
V=√Vx^2+Vy^2
θ=tan-1(Vy/Vx)


3. The correct answer apparently is 5.08m/s and θ=-72.8°. I didn't get that...
 
Physics news on Phys.org
The equations you give are OK to find the speed and direction, but you need some more equations to find Vx and Vy when the mug hits the floor.
 
AlephZero said:
The equations you give are OK to find the speed and direction, but you need some more equations to find Vx and Vy when the mug hits the floor.

I don't know how to solve the problem with the equations I do have though...
 
How do you think vx and the sliding velocity compare?

Think about it, don't try use the equations!
 
217 MeV said:
How do you think vx and the sliding velocity compare?

Think about it, don't try use the equations!

I know I need to find Vf for the speed when the mug hits the floor. And then direction idk
 
Well, start with the x-component of v_f. What will that be?

Remember there's no friction whilst the mug is sliding, and I assume there is no air resistance.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top