Bessel function, what does the notation in this function mean?

AI Thread Summary
The discussion centers on understanding the notation in a specific equation involving Bessel functions, particularly the terms ber and bei, which represent the real and imaginary parts of the Bessel function of the first kind, respectively. The user seeks clarification on the derivatives denoted by ber' and bei' and how to apply these functions in MATLAB for accurate calculations. There is a question about whether the subscripted '2' indicates the use of order 2 Bessel functions or if multiple orders should be considered for improved accuracy. A link to additional resources was provided, but the user found it initially unhelpful. Ultimately, the user is looking for guidance on correctly implementing these functions in their calculations.
crobar
Messages
2
Reaction score
0
Hello,

I have come across the following equation and want to know what the notation means exactly:

\frac{-2 \pi \gamma}{\sigma} \frac{[ber_2(\gamma)ber'(\gamma) + bei_2(\gamma)bei'(\gamma)]}{[ber^2(\gamma) + bei_2(\gamma)]}

Now, I know ber is related to bessel functions. For example, I think ber is the real part of the Bessel function of first kind, and bei might be the imaginary part? I assume ber' is the derivative

Could someone possibly explain what each of the bei ber parts are?

I ultimately will want to calculate this formula in Matlab. Matlab's bessel function can apparently return different orders of the bessel function, should I be using anything other than order 1? does the subscripted 2 in the formula indicate order 2 should be used for instance? Alternatively, should I be using multiple orders and summing the results or something like this to improve accuracy?

Thanks!
 
Mathematics news on Phys.org
ok, I was about to say that I'd already seen this and it didn't answer my questions, but on closer reading, I suppose it does actually.

thanks
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top