Black Body Radiation (Awkward integral)

CanIExplore
Messages
97
Reaction score
0

Homework Statement


What percentage of the Sun’s blackbody radiation spectrum falls into the visible light spectrum (400-700 nm). Where T=5000K
Hint: Integrate over frequencies


Homework Equations


B=2h\nu3c-2 (eh\nu/kT-1)-1

Where \nu is the frequency of the light.

The Attempt at a Solution



Ok so the problem is very straightforward, I'm just having trouble evaluating the integral. I need to integrate the equation for the brightness (B) over the frequency \nu where the limits are given by the span of wavelengths in the visible part of the spectrum. The integral then just looks something like this:
\int B=\int \nu3(e\nu-1)-1 , where i excluded the constants.

I tried integration by parts but it didn't work. I also plugged it into mathematica and got a very weird, long answer that didn't make sense. When I asked my TA about it he told me I had to solve it numerically. What does it mean to solve an integral numerically? Am I just supposed to plug in the lower limit and then subtract that from what I get when I plug in the upper limit? I am thinking of the fundamental theorem of calculus here.

Thanks
 
Physics news on Phys.org
This integral doesn't have a primitive in terms of elementary functions. To evaluate this integral you can use the Raleigh-Jeans approximation by looking it up in your book or by using the Taylor series of the exponent up to first order.
 
When you integrate a function numerically, you basically divide the area up into a bunch of narrow rectangles or trapezoids and add them all up. There are a lot of ways to do this, try reading this:

http://en.wikipedia.org/wiki/Numerical_integration

To accomplish this, you could write a program to do it, or use a canned program. Mathematica has a function NIntegrate which will do numerical integration and, given the function and the endpoints, will just return a number.
 
Thanks guys
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top