Bose condensation in a harmonic potential

CAF123
Gold Member
Messages
2,918
Reaction score
87

Homework Statement


[/B]
Consider a gas of N weakly interacting bosons trapped in a 3d harmonic potential ##V = \frac{1}{2}mw^2 (x^2 + y^2 + z^2)##. The single particle quantum states have energies ##\epsilon = \hbar w (n_x + n_y + n_z + 3/2)##.

Calculate the total number of quantum states with energies less than ##\epsilon## and from this deduce that the density of states ##g(\epsilon)## is $$g(\epsilon) \approx \frac{\epsilon^2}{2 (\hbar w)^3} \,\,\,\text{for large}\,\,\,\,\epsilon$$
Hint: ##\epsilon## is a function of ##\mathbf n## rather than just the magnitude ##n##. A surface of constant energy is a plane in ##n## space and the number of states with energy less than ##\epsilon## is given by the volume of a tetrahedron.

Homework Equations


[/B]
##V = \int_0^{\epsilon_{max}} g(\epsilon) d \epsilon##

The Attempt at a Solution


[/B]
A plane intersecting the ##n_x, n_y ## and ##n_z## axes form a tetrahedron with the sides the ##n_x - n_y## plane, ##n_y - n_z## plane and so on. The volume of such a tetrahedron is ##V = n_x n_y n_z/6##. Therefore per the hint, $$\frac{n_x n_y n_z}{6} = \int_0^{\epsilon_{max}} g(\epsilon) d \epsilon = G(\epsilon_{max}) - G(0)$$ I am just a bit unsure of how to progress. Many thanks!
 
Physics news on Phys.org
CAF123 said:
The volume of such a tetrahedron is ##V = n_x n_y n_z/6##.

nx, ny, and nz are variables. What are the values of these variables in your expression for V?
 
Hi TSny,
TSny said:
nx, ny, and nz are variables. What are the values of these variables in your expression for V?
I could reexpress anyone of ##n_x, n_y## or ##n_z## using the equation for the energy ##\epsilon = \hbar w(n_x + n_y + n_z + 3/2)## to reduce the number of variables by one. Is it what you meant? The plane in n-space can be written as ##n_x + n_y + n_z = C## for C a constant given by rearranging the above equation. Thanks.
 
The volume of the tetrahedron in n-space should depend only on C. Can you express V in terms of C?
 
TSny said:
The volume of the tetrahedron in n-space should depend only on C. Can you express V in terms of C?
Yes sorry, I was confusing my own notation. The volume is ##C^3/6## and so we have the integral $$\frac{C^3}{6} = \int_0^{\epsilon_{max}} g(\epsilon) d \epsilon = G(\epsilon_{\max}) - G(0) = \frac{1}{6} \left(\frac{\epsilon_{max}}{\hbar w} - \frac{3}{2}\right)^3$$ Then $$\frac{d}{d\epsilon} \left(G(\epsilon) -G(0)\right) = \frac{d}{d\epsilon} \frac{1}{6} \left(\frac{\epsilon}{\hbar w} - \frac{3}{2}\right)^3 \approx \frac{\epsilon^2}{2 (\hbar w)^3}$$ Is this along the right lines? I feel like I have sort of fudged the result in getting ##g(\epsilon)##, in particular how I can neglect further terms in the expansion of the square at the end and in going from ##G(\epsilon_{max}) - G(0)## to ##d/d\epsilon (G(\epsilon) - G(0))##.
 
That looks good.

##\epsilon## is assumed "large". Presumably, that means relative to ##\hbar \omega##. So, you can neglect the 3/2 relative to ##\epsilon/(\hbar \omega)##.
 
  • Like
Likes CAF123
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top