I Bresar, Lemma 1.3 - Real Quaternions .... Division Algebras

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Matej Bresar's book, "Introduction to Noncommutative Algebra" and am currently focussed on Chapter 1: Finite Dimensional Division Algebras ... ...

I need help with some aspects of the proof of Lemma 1.3 ... ...

Lemma 1.3 reads as follows:
?temp_hash=34c5196f407ac73e36866c16ee629634.png


In the above text by Matej Bresar we read the following:

" ... ... Set ##i := \frac{1}{ \sqrt{ -u^2 } } u , \ \ j := \frac{1}{ \sqrt{ -v^2 } } v## , and ##k := ij##.

It is straightforward to check that (1.1) holds ... ... "
I need some help in proving that ##ij = -ji = k## ... sadly I cannot get past the point of substituting the relevant formulas ...

Hope someone can help ...Peter

EDIT ... I must admit that as I reflect further on Lemma 1.3 I am more confused than I first thought ... why is Bresar defining another 'multiplication' in V ... that is why define ##\circ## ... we already have a multiplication from D ... and how does the new definition ##\circ## play out when validating 1.1 ...============================================================================

In order for readers of the above post to appreciate the context of the post I am
providing pages 1-3 of Bresar ... as follows ...
?temp_hash=34c5196f407ac73e36866c16ee629634.png

?temp_hash=34c5196f407ac73e36866c16ee629634.png

?temp_hash=34c5196f407ac73e36866c16ee629634.png
 

Attachments

  • Bresar - Lemma 1.3 ... ... .png
    Bresar - Lemma 1.3 ... ... .png
    71.8 KB · Views: 863
  • Bresar - Page 1.png
    Bresar - Page 1.png
    34.7 KB · Views: 610
  • Bresar - Page 2.png
    Bresar - Page 2.png
    66.8 KB · Views: 569
  • Bresar - Page 3 ... ....png
    Bresar - Page 3 ... ....png
    41.3 KB · Views: 607
Last edited:
Physics news on Phys.org
Math Amateur said:
I need some help in proving that ##ij=−ji=k## ... sadly I cannot get past the point of substituting the relevant formulas
That ##ij=k## is true by definition of ##k##. So all we have to prove is that ##ij=-ji##, ie that ##ij+ji=0_D##. Here goes:

\begin{align*}
ij+ji&=\left(\frac1{\sqrt{-u^2}}u\right)\left(\frac1{\sqrt{-v^2}}v\right)
+\left(\frac1{\sqrt{-v^2}}v\right)\left(\frac1{\sqrt{-u^2}}u\right)\\
&\textrm{[I've now edited the above line to remove the typo pointed out by fresh_42 below. Thank you]}\\
&=\frac{uv+vu}{\sqrt{u^2v^2}}
\end{align*}
which is zero iff the numerator is zero.

But the numerator is ##uv+vu=u\circ v=0##, as claimed in the second line of the proof.

To see that that claim is true, we calculate as in the alignment below. But first, note that ##v^2## commutes with everything, since ##v^2\in\mathbb R'## so that ##v^2=a1_D## for some ##a\in\mathbb R,\ a\leq 0##, and ##1_D## commutes with everything, as does scalar multiplication:

\begin{align*}
u\circ v&=uv+vw\\
&=\left(w-\frac{w\circ v}{v\circ v}v\right)v+v\left(w-\frac{w\circ v}{v\circ v}v\right)\\
&=wv+vw-\frac{(w\circ v)v^2+v(w\circ v)v}{v\circ v}\\
&=wv+vw-\frac{(wv+vw)v^2+v(wv+vw)v}{2v^2}\\
&=\frac{2wvv^2+2vwv^2-(wv+vw)v^2-v(wv+vw)v}{2v^2}\\
&=\frac{2wvv^2+2vwv^2-wvv^2-vwv^2-vwv^2-v^2wv}{2v^2}\\
&=\frac{2wvv^2+2vwv^2-wvv^2-vwv^2-vwv^2-wvv^2}{2v^2}\\
&=\frac{0}{2v^2}=0
\end{align*}
where we have repeatedly used the ability of ##v^2## to commute with anything else, to move it about.
 
Last edited:
  • Like
Likes Math Amateur
Just a few remarks. Firstly, ignore the last bracket in @andrewkirk 's second line, it's a cut+paste typo. Secondly, I'll try to answer
Math Amateur said:
I must admit that as I reflect further on Lemma 1.3 I am more confused than I first thought ... why is Bresar defining another 'multiplication' in V ...
I think we have to consider the following: Goal of all this is, to show there are division algebras over ##\mathbb{R}##, namely the complex numbers ##\mathbb{C}=\mathbb{R}+V=\mathbb{R}+i\cdot\mathbb{R}##, the quaternions ##\mathbb{H}=\mathbb{R}+V=\mathbb{R}+i\cdot\mathbb{R}+j\cdot\mathbb{R}+k\cdot\mathbb{R}## and possibly the octonions as well.

Therefore Lemma 1.2 which proves that ##V## (the imaginary part of our ##D##) is a linear subspace.

Many of the techniques here, e.g. Lemma 1.1., are simply a reduction to formulas in the real numbers, where we know how to do calculations, whereas in a potential division algebra ##D## we don't - yet. Furthermore, we have to use the specialties of the real numbers somehow, namely that it is an Archimedean ordered field, which Lemma 1.1. is closely related to, or that squares in ##\mathbb{R}## are always non-negative.

So Bresar uses the structure in ##\mathbb{R}## to deduce insights on ##D##. As he also knows, where this ends, namely at ##\mathbb{C},\mathbb{H}## and ##\mathbb{O}## and that ##i\,\cdot\,j=k=-j\,\cdot\,i## holds, it makes sense to examine the "zeroness" of ##i \circ j = i\cdot j + j\cdot i## which explains the additional (now made commutative again(!)) multiplication. In addition ##i,j,k## have to be defined somehow, only by the use of a construction with real numbers. The entire difficulty here is not to show that ##\mathbb{C},\mathbb{H},\mathbb{O}## are division algebras, but to show they are the only ones. Therefore we need necessary conditions for ##D## being a division algebra over ##\mathbb{R}##, the more the better.

At least this is what I hope for, because to show that the examples are actually division algebras, we could simply perform some calculations instead.
 
  • Like
Likes Math Amateur
Andrew, fresh_42 ... thanks for the posts ...

Just reflecting on what you have written ...

Thanks again ... appreciate your help and your insights ...

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top