Calculating Decay Lifetime of Unstable Isotope

AI Thread Summary
The discussion focuses on calculating the decay lifetime of an unstable isotope using the average energy and line-width of emitted gamma rays. The average energy is given as 100 keV with a line-width of 5 x 10^-6 eV, prompting questions about how this relates to the isotope's lifetime. The connection to the Doppler shift effect and the Heisenberg uncertainty principle is explored, particularly the time-energy relationship. The uncertainty principle suggests that energy and time cannot be precisely measured simultaneously, which may provide insight into the decay process. Overall, the relationship between the gamma ray energy characteristics and the isotope's decay lifetime remains unclear to the participants.
square_imp
Messages
21
Reaction score
0
My question relates to calculating the decay lifetime of an unstable isotope. The information given is the average energy of the emitted gamma ray from the decay has an average energy of say 100kev and a line-width of 5 x 10^-6ev. From this information I need to work out the average lifetime for the isotope.

From what I can gather the problem seems to be similar to the Doppler shift effect. From the equation E = hf the energy of the gamma ray is related to its frequency and therefore the change in frequency can be worked out. Does the line width mean the upper and lower boundry of the gamma ray energy with the 100keV in the middle of that range? The other thing is that the shift of the energy either means the source is moving or the energy of the gamma rays emitted is changing for some other reason. The relation between this and the lifetime is not obvious to me. Any help would be much appreciated. I am probably missing something obvious.
 
Physics news on Phys.org
square_imp said:
My question relates to calculating the decay lifetime of an unstable isotope. The information given is the average energy of the emitted gamma ray from the decay has an average energy of say 100kev and a line-width of 5 x 10^-6ev. From this information I need to work out the average lifetime for the isotope.

From what I can gather the problem seems to be similar to the Doppler shift effect. From the equation E = hf the energy of the gamma ray is related to its frequency and therefore the change in frequency can be worked out. Does the line width mean the upper and lower boundry of the gamma ray energy with the 100keV in the middle of that range? The other thing is that the shift of the energy either means the source is moving or the energy of the gamma rays emitted is changing for some other reason. The relation between this and the lifetime is not obvious to me. Any help would be much appreciated. I am probably missing something obvious.

To *me*, this seems to be an application of the time-energy Heisenberg uncertainty principle. Have you covered that?
 
From what I recall we have covered parts of the Heisenberg uncertainty principle, to note the position-momentum relationship. I will have a look and see what I can find about the time-energy relationship. I presume it will be similar to the position-momentum relationship.
 
From looking at the Heisenberg Principle again I find the relation as follows:

Energy uncertainty x Time uncertainty = Planks constant / 4 x pi

This is an equation describing that both the time and energy of a particle cannot be simultaneously accurately measured. The connection with my original problem I still cannot see really. :confused:
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top