Calculating electric charge from graph (capacitor)

Click For Summary

Homework Help Overview

The discussion revolves around calculating the electric charge on a capacitor using a graph of voltage versus time. Participants are exploring the integration of functions related to the charging process of a capacitor.

Discussion Character

  • Exploratory, Assumption checking

Approaches and Questions Raised

  • Participants are discussing the integration of voltage over time to find charge, questioning the relationship between voltage and time, and clarifying whether the scenario involves charging or discharging the capacitor.

Discussion Status

There is an ongoing exploration of the problem, with participants raising questions about the assumptions made regarding the charging and discharging states of the capacitor. Some guidance has been offered regarding terminology and the relationship between voltage and time.

Contextual Notes

Participants note discrepancies in the problem statement, such as the initial voltage and the context of charging versus discharging, which may affect the interpretation of the graph and the calculations involved.

krisu334
Messages
1
Reaction score
0
Homework Statement
When charging a capacitor we obtained a graph of voltage in terms of time. From the graph, find the amount of electronic charge on the capacitor.
Relevant Equations
Initial voltage: 10 V
Capacity: 2*10^(-6) Fahr.
Resistance: 1*10^6 Ohm
Apparently, we need to integrate the functions from 0 to the time when it is fully charged. However, I integrated in terms of t so the soultion (according to a graph programme) should be around 236 Vs but I don’t see how this could help me.
 
Physics news on Phys.org
Hello @krisu334 ,
:welcome: ##\ ##!​
What is the expected relationship between ##V## and ##t##?
 
krisu334 said:
Homework Statement: When charging a capacitor we obtained a graph of voltage in terms of time. From the graph, find the amount of electronic charge on the capacitor.
Relevant Equations: Initial voltage: 10 V
Capacity: 2*10^(-6) Fahr.
Resistance: 1*10^6 Ohm

Apparently, we need to integrate the functions from 0 to the time when it is fully charged. However, I integrated in terms of t so the soultion (according to a graph programme) should be around 236 Vs but I don’t see how this could help me.
Hi @krisu334. In addition to @BvU ’s question:

Presumably V is the voltage across the capacitor. Are you charging or discharging? You say “Initial voltage: 10 V” which implies you are discharging. But you also say “from 0 to the time when it is fully charged” which implies charging.

Minor points, for information:
The unit of capacitance (not “capacity”) is the ‘farad’ (lower case), symbol ‘F’.
The unit of resistance is the ‘ohm’ (lower case), symbol ‘Ω’.
 
Well, what is the status?
 

Similar threads

Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
4
Views
3K
Replies
23
Views
4K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K