Calculating Electric Field at the Center of a Hemispherical Shell of Charge

AI Thread Summary
To calculate the electric field at the center of a hemispherical shell of charge, the problem involves integrating using polar coordinates from 0 to π. The approach requires finding the charge density and considering the Coulomb force from an infinitesimal piece of the shell on a test charge at the origin. Gauss's law is not applicable due to the lack of symmetry in this configuration. An alternative method suggested involves calculating the field of a ring and summing contributions from washers to form the shell. The discussion emphasizes the importance of setting up the integral correctly and using spherical coordinates effectively.
swervin09
Messages
7
Reaction score
0

Homework Statement


A hollow sphere of outer radius R2 and inner radius of R1 carries a uniform charge 2Q. The sphere is then cut in half to create a hemispherical shell of charge Q. Calculate E at the center point (origin) P.


Homework Equations


equation of a hollow sphere = 2/3π(r2-r1)
Gauss' Law ∫E dot dA
surface area hemisphere = 2πr^2


The Attempt at a Solution


Well, I know this is an integration problem and that I am better off integrating with polar coordinates and that I will be integrating from 0-->π as my lower and upper integral bounds.
But in all honesty I haven't had much fortune setting the integral up. The set up is the help I am asking for.
 
Physics news on Phys.org
If I am not mistaken, you need to find the E field due to a HEMISPHERICAL shell

That involves some somewhat-complicated multiple integrals and E form Coulumb's law. Gauss's law will not work due to lack of symmetry
 
Assuming that that is your problem, here is my hint:

Use spherical coordinates. find the charge density. consider an infinitesimal piece of the shell and the Coulomb force on a test charge at the origin. Then choose appropriate limits for r, theta, and phi and integrate
 
Yes that is the problem. spherical coordinates make more sense. I will try that and post tomorrow what I have come up with. I don't have my calculus book nearby to refresh my memory of spherical coord. integration. This is one of those problems that has me intrigued and eager to "beat". It isn't worth a lot of points but it is due Thursday.
Thank you for the hint!
 
no problem!

I might add: depending on how comfortable you are with multivariable, you don't have to use a triple integral; just find the field of a ring, sum into a washer, sum the washers into a shell. The spherical coordinates are just a way of thinking, no need to get formal about it
 
I follow you up until you state sum the washers into a shell. Please provide a hint as to that specific.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top