Calculating Electric Potential for a Non-Negligible Thickness Toroid

AI Thread Summary
The discussion revolves around calculating the electric potential of a toroid with a non-negligible thickness. There is confusion regarding the linear charge density, specifically why it is expressed as λ = q/(2πR) despite the toroid's width of 2a. Participants highlight that the toroid's larger area implies a potentially lower linear charge density. The challenge of determining the charge distribution for a metallic toroid is acknowledged as a significant complexity in the calculations. Overall, the conversation emphasizes the need for a revised approach to account for the toroid's thickness in electric potential calculations.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For A.1 of this problem,
1675405830601.png

The solution is
1675399497646.png

However, I have a doubt about the linear charge density ##\lambda##.

I don't understand how ##\lambda = \frac {q}{2\pi R} ## since this is not a thin ring, but has a non-negligible width of ##2a##

I think that the toroid has a larger area than thin circle with a circumference ##2\pi R## so linear charge density should be less than that expression.

EDIT: How would we calculate the electric potential if the thickness was not neglected?

Many thanks !

Problem from:
https://www.ipho2021.lt/uplfiles/Th2.pdf
https://www.ipho2021.lt/uplfiles/Th2-Solution.pdf
 

Attachments

  • 1675399479240.png
    1675399479240.png
    36.3 KB · Views: 102
Last edited by a moderator:
Physics news on Phys.org
1675414550671.png
 
  • Like
Likes member 731016
BvU said:
Thank you for your reply @BvU!

However, how would we calculate the electric potential if the thickness was not neglected?

Many thanks!
 
Callumnc1 said:
Thank you for your reply @BvU!

However, how would we calculate the electric potential if the thickness was not neglected?

Many thanks!
Since it is metallic, your first challenge would be to figure out the charge distribution. Good luck with that.
 
  • Like
Likes member 731016, nasu and BvU
haruspex said:
Since it is metallic, your first challenge would be to figure out the charge distribution. Good luck with that.
Thank you for your reply @haruspex! Yeah that seems hard!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top