Observer Two
- 24
- 0
I have a dipole such as:
\rho(\vec{r}) = q \delta(\vec{r} - \vec{a}) - q \delta(\vec{r} + \vec{a})
with \vec{a} = a \vec{e}_x.
I have to show that the energy in a constant external field \vec{E} is:
V = - 2 q \vec{a} \vec{E}
My calculations so far:
With the formula: \phi(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \! \rho(\vec{r}') \frac{1}{|\vec{r} - \vec{r}'|} \, d^3r'
I have calculated for the potential:
\phi(\vec{r}) = \frac{q}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})
The energy V(\vec{r}) = \phi(\vec{r}) q
Thus I get for the energy:
V(\vec{r}) = \frac{q^2}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})
However I don't understand why that is equal to -2q \vec{a} \vec{E}.
Any ideas?
\rho(\vec{r}) = q \delta(\vec{r} - \vec{a}) - q \delta(\vec{r} + \vec{a})
with \vec{a} = a \vec{e}_x.
I have to show that the energy in a constant external field \vec{E} is:
V = - 2 q \vec{a} \vec{E}
My calculations so far:
With the formula: \phi(\vec{r}) = \frac{1}{4 \pi \epsilon_0} \int \! \rho(\vec{r}') \frac{1}{|\vec{r} - \vec{r}'|} \, d^3r'
I have calculated for the potential:
\phi(\vec{r}) = \frac{q}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})
The energy V(\vec{r}) = \phi(\vec{r}) q
Thus I get for the energy:
V(\vec{r}) = \frac{q^2}{4 \pi \epsilon_0} (\frac{1}{|\vec{r} - \vec{a}|} - \frac{1}{|\vec{r} + \vec{a}|})
However I don't understand why that is equal to -2q \vec{a} \vec{E}.
Any ideas?