Calculating Flux: Homework Statement

  • Thread starter Thread starter oteggis
  • Start date Start date
  • Tags Tags
    Flux
oteggis
Messages
9
Reaction score
0

Homework Statement


Let S be the surface of a solid R , which lies inside the cylinder:
##x^2+y^2=16##
and between the plane

where x=0 and z=5

There is also defined a vector field F by:
##\begin{align}F(x,y)=(-x^3i-y^3j+3z^2k)\end{align}##

(a) Calculate : $$\iint_{T} F.\hat n\mathrm dS$$with T = {##(x,y,5)∈ℝ | x^2+y^2≤16##}(b) Calculate DivF and $$\iint_{S} F.\hat n\mathrm dS$$

with n the outward pointing unit normal.

(c) Calculate: $$\iint_{V} F.\hat n\mathrm dS$$

with V = {##(x,y,z)∈ℝ |x^2+y^2≤16 and 0≤z≤5##} and the unit normal ##\hat n\ ##points out of the solid R

Homework Equations


$$\iint_{V} F.\hat n\mathrm dS$$

The Attempt at a Solution


(a) On the top surface of the Cylinder z = 5, ##\hat n##= ##\hat k##
##F.\hat n = [-x^3i +-y^3j +3z^2k].[k]=3z^2 ##
##\iint_{S} F.\hat n \mathrm dS = \iint_{S} 3z^2\mathrm dS##
##\iint_{S} F.\hat n \mathrm dS = \iint_{S} 3(5^2)\mathrm dS##
##\iint_{S} F.\hat n \mathrm dS = 75\iint_{S}\mathrm dS##
The area enclosed by the circle is ##16\pi##
since the radius of the circle is 4.
Therefore
##\iint_{S} F.\hat n \mathrm dS = 75(16\pi) = 1200\pi ##(b) ##DivF = \nabla.F = [i\frac{\partial }{\partial x}+ j\frac{\partial }{\partial y} +k\frac{\partial }{\partial z}].[-x^3i +-y^3j +3z^2k]= -3x^2-3y^2 +6z##
DivF = ∇.F = -3(x^2+y^2-2z)
##\iint_{S} F.\hat n \mathrm dS =\iiint_{V} \operatorname{div} F dV -\iint_{S_1} F.\hat n \mathrm dS##
## \iint_{S_1} F.\hat n \mathrm dS = 0 ## since z=0, then
## \iint_{S} F.\hat n \mathrm dS = \iiint_{V} \operatorname{div} F dV ##**How do I get ##\hat n## in this case?**

(c) From my understanding, I have to use Divergence Theorem here
$$\iint_{V} F.\hat n\mathrm dS = \iiint_{V} \nabla.F \mathrm dV $$
$$\iint_{V} F.\hat n\mathrm dS = \iiint_{V} -3(x^2+y^2-2z) \mathrm dV $$
$$\iint_{V} F.\hat n\mathrm dS = -3\iiint_{V} (x^2+y^2-2z) \mathrm dV $$

Using Cylindrical coordinates
$$\iint_{V} F.\hat n\mathrm dS = -3\iiint_{V} [(r^2\cos^2\theta+r^2\sin^2\theta-2z)] \mathrm rdzdrd\theta $$
$$\iint_{V} F.\hat n\mathrm dS = -3\int_0^{2\pi} \int_0^4 \int_0^5 [(r^2\cos^2\theta+r^2\sin^2\theta-2z)] \mathrm rdzdrd\theta $$
$$\iint_{V} F.\hat n\mathrm dS = 432\pi $$
 
Last edited:
Physics news on Phys.org
Hello oteggis,

Could you read what you posted and fix the typesetting ? for in-line math you want to use ## ... ## delimiters and for displayed math $$ ... $$

I take it the solid ##R## completely fills the cylinder ? ('lies inside' can apply to a very tiny fraction of the space). And not ##x=0## but ##z=0## ?
 
On the curved cylinder surface, $$\hat{n}=\hat{r}=\frac{x\hat{i}+y\hat{j}}{4}$$
 
Chestermiller said:
On the curved cylinder surface, $$\hat{n}=\hat{r}=\frac{x\hat{i}+y\hat{j}}{4}$$
so in Polar coordinates: ##\hat n## = ##cos\theta i + sin\theta j##
But I got ##\hat n## = ##-cos\theta i-sin\theta j## instead
 
oteggis said:
so in Polar coordinates: ##\hat n## = ##cos\theta i + sin\theta j##
But I got ##\hat n## = ##-cos\theta i-sin\theta j## instead
That's the inward-directed normal, not the outward normal required by the divergence theorem.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top