Calculating Flux: Homework Statement

  • Thread starter Thread starter oteggis
  • Start date Start date
  • Tags Tags
    Flux
Click For Summary

Homework Help Overview

The problem involves calculating flux through a surface defined by a solid inside a cylinder and between specified planes, with a given vector field. The tasks include evaluating surface integrals and applying the Divergence Theorem.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants discuss the calculation of flux through different surfaces, including the top surface of the cylinder and the curved surface. There are attempts to apply the Divergence Theorem and questions about the correct outward normal vector.

Discussion Status

Some participants have provided guidance on typesetting and clarified assumptions about the solid's dimensions. There is ongoing exploration of the outward normal vector for the curved surface, with differing opinions on its direction.

Contextual Notes

There are questions about the interpretation of the solid's boundaries and the correct application of the Divergence Theorem, as well as concerns regarding the typesetting of mathematical expressions.

oteggis
Messages
9
Reaction score
0

Homework Statement


Let S be the surface of a solid R , which lies inside the cylinder:
##x^2+y^2=16##
and between the plane

where x=0 and z=5

There is also defined a vector field F by:
##\begin{align}F(x,y)=(-x^3i-y^3j+3z^2k)\end{align}##

(a) Calculate : $$\iint_{T} F.\hat n\mathrm dS$$with T = {##(x,y,5)∈ℝ | x^2+y^2≤16##}(b) Calculate DivF and $$\iint_{S} F.\hat n\mathrm dS$$

with n the outward pointing unit normal.

(c) Calculate: $$\iint_{V} F.\hat n\mathrm dS$$

with V = {##(x,y,z)∈ℝ |x^2+y^2≤16 and 0≤z≤5##} and the unit normal ##\hat n\ ##points out of the solid R

Homework Equations


$$\iint_{V} F.\hat n\mathrm dS$$

The Attempt at a Solution


(a) On the top surface of the Cylinder z = 5, ##\hat n##= ##\hat k##
##F.\hat n = [-x^3i +-y^3j +3z^2k].[k]=3z^2 ##
##\iint_{S} F.\hat n \mathrm dS = \iint_{S} 3z^2\mathrm dS##
##\iint_{S} F.\hat n \mathrm dS = \iint_{S} 3(5^2)\mathrm dS##
##\iint_{S} F.\hat n \mathrm dS = 75\iint_{S}\mathrm dS##
The area enclosed by the circle is ##16\pi##
since the radius of the circle is 4.
Therefore
##\iint_{S} F.\hat n \mathrm dS = 75(16\pi) = 1200\pi ##(b) ##DivF = \nabla.F = [i\frac{\partial }{\partial x}+ j\frac{\partial }{\partial y} +k\frac{\partial }{\partial z}].[-x^3i +-y^3j +3z^2k]= -3x^2-3y^2 +6z##
DivF = ∇.F = -3(x^2+y^2-2z)
##\iint_{S} F.\hat n \mathrm dS =\iiint_{V} \operatorname{div} F dV -\iint_{S_1} F.\hat n \mathrm dS##
## \iint_{S_1} F.\hat n \mathrm dS = 0 ## since z=0, then
## \iint_{S} F.\hat n \mathrm dS = \iiint_{V} \operatorname{div} F dV ##**How do I get ##\hat n## in this case?**

(c) From my understanding, I have to use Divergence Theorem here
$$\iint_{V} F.\hat n\mathrm dS = \iiint_{V} \nabla.F \mathrm dV $$
$$\iint_{V} F.\hat n\mathrm dS = \iiint_{V} -3(x^2+y^2-2z) \mathrm dV $$
$$\iint_{V} F.\hat n\mathrm dS = -3\iiint_{V} (x^2+y^2-2z) \mathrm dV $$

Using Cylindrical coordinates
$$\iint_{V} F.\hat n\mathrm dS = -3\iiint_{V} [(r^2\cos^2\theta+r^2\sin^2\theta-2z)] \mathrm rdzdrd\theta $$
$$\iint_{V} F.\hat n\mathrm dS = -3\int_0^{2\pi} \int_0^4 \int_0^5 [(r^2\cos^2\theta+r^2\sin^2\theta-2z)] \mathrm rdzdrd\theta $$
$$\iint_{V} F.\hat n\mathrm dS = 432\pi $$
 
Last edited:
Physics news on Phys.org
Hello oteggis,

Could you read what you posted and fix the typesetting ? for in-line math you want to use ## ... ## delimiters and for displayed math $$ ... $$

I take it the solid ##R## completely fills the cylinder ? ('lies inside' can apply to a very tiny fraction of the space). And not ##x=0## but ##z=0## ?
 
On the curved cylinder surface, $$\hat{n}=\hat{r}=\frac{x\hat{i}+y\hat{j}}{4}$$
 
Chestermiller said:
On the curved cylinder surface, $$\hat{n}=\hat{r}=\frac{x\hat{i}+y\hat{j}}{4}$$
so in Polar coordinates: ##\hat n## = ##cos\theta i + sin\theta j##
But I got ##\hat n## = ##-cos\theta i-sin\theta j## instead
 
oteggis said:
so in Polar coordinates: ##\hat n## = ##cos\theta i + sin\theta j##
But I got ##\hat n## = ##-cos\theta i-sin\theta j## instead
That's the inward-directed normal, not the outward normal required by the divergence theorem.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
8
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K