Calculating Heat Balance & Steam kg/kg for Different Variables

maarjaaur
Messages
3
Reaction score
0
Hello,

Im new here, sorry for my english, but I am in desperate need of help regarding my own experiment which i need to finish. I need to calculate steam kg/kg (flash steam maybe in english?). Basically i have entering steam temperature and pressure and exiting steam temp. and pressure from evaporator? and i need to find ... S/W... kg/kg

Homework Statement


I need to find basically 4 different answers all with different entering steam/water variables.
1) entering temp 100 Celsius,1atm. exiting 100C 2atm.
2)entering temp 15C, 1atm. exiting 100C 2 atm.
3)entering 0,8atm 100C. exiting 100C 2atm.
4) 15c 0,8 atm. exiting 100C 2atm.


Homework Equations


I have tried according to these calculations but something doesn't add up.
I take info from a table where i get kJ for water at different pressure but i don't understand how does temperature change the calculations. And i get minus answer for the first variable...is it ok?



The Attempt at a Solution


example at 1. variable
I take the formule given above and fill the blanks with steam table here: http://www.engineeringtoolbox.com/saturated-steam-properties-d_101.html
then i get minus answer and i think its false, i don't know where to calculate the temperature i have only taken the pressure and kJ-s from the table into account according to that formula. ( 417,5-504,7 / 2201,59 = - 0,0396 kg/kg )
 
Physics news on Phys.org
Hello Maar, and welcome to PF. Your essay is indeed a little difficult to read.
Let's start with 1). Going from 1 atm = 101.325 kPa to 2 atm is a compression, not so much a flash. Is that really intended ? In a flash you decrease the pressure and then it makes sense to calculate how much vapour you get per kilogram water coming in.
This repeats in the other three, so I thought I'd better ask.
 
Hey,

Probably yeah, you are right and the entering/exiting temp and pressure is in reverse. Will edit in main post.
 
Ok, can't change so... please see entering/exiting variables in reverse. I myself also noted that it is a bit unlogical that way.
 
OK, so we flash 1 kg of water at 100 C 2 x 101.33 kPa to 1 kg of water liquid + water vapour at 100 C, 101.33 kPa and want to know the mass of the water vapour.
Relevant equations: mass conservation and enthalpy conservation (assuming the flash is adiabatic: no energy is added or removed).

mass conservation: ##m_{\rm water \ in} = m_{\rm water\ out} + m_{\rm steam \ out}##

enthalpy balance: ##m_{\rm water\ in} H_{\rm water\ in} = m_{\rm water\ out}H_{\rm water\ out} + m_{\rm steam\ out}H_{\rm\ steam \ out}##

Per kilogram of water in, defining x = ## m_{\rm steam \ out}/ m_{\rm water \ in} ## :

## H_{\rm water\ in} =(1-x) H_{\rm water\ out} + x H_{\rm\ steam \ out} \ \Leftrightarrow##

## H_{\rm water\ in}- H_{\rm water\ out} = x ( H_{\rm\ steam \ out}- H_{\rm water\ out}) \ \Leftrightarrow##

$$x = { H_{\rm water\ in} - H_{\rm water\ out} \over H_{\rm\ steam \ out}- H_{\rm water\ out}}$$
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.

Similar threads

Replies
2
Views
976
Replies
2
Views
2K
Replies
2
Views
1K
Replies
10
Views
2K
Replies
3
Views
2K
Replies
4
Views
2K
Back
Top