Calculating Marginal Probability Mass Functions for Discrete Random Variables

Mathemag1c1an
Messages
6
Reaction score
0
I have this question which I cannot seem to solve:
The joint probability mass function p(x, y) of two discrete random variables X and Y is given by.
p(x,y) = ([5^x][7^y][e^-5])/x!(y-x)!
x and y are non-negative integers and x <= y
(i) Find the marginal probability mass functions of X and Y.
 
Physics news on Phys.org
You would have to "integrate out" the dependence on the second variable. Explicitly

<br /> p(x)=\sum_{y\geq x}p(x,y)<br />
and
<br /> p(y)=\sum_{x\leq y}p(x,y)<br />
By the way, you joint pmf doesn't sum to one, but to e37.
 
but how do i integrate the factorials?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top