Calculating the Bose-Einstein Condensation Temperature

Mr LoganC
Messages
19
Reaction score
0

Homework Statement


Estimate the Bose-Einstein condensation temperature of Rb 87 atoms with density of 10^11 atoms per cm^3.


Homework Equations


T=\frac{n^{2/3}h^{2}}{3mK_{B}}


The Attempt at a Solution


This should be just a standard plug and chug question, but my answers are not even close to reasonable! I would expect to get anywhere from 500nK to 50nK for an answer, but I am getting thousands of Kelvin! Are my units wrong? I am using Boltzman constant with units of eV\bullet K^{-1} and Plank's with units of eV\bullet s.
Then I am using the density in Atoms per m^3 and the mass of a single Rb 87 atom in Kg.
Am I missing something here with units? That is the only thing I can think is wrong.
 
Physics news on Phys.org
At first glance I would use joules (Nxm) instead of eV since since other units are SI...
 
bloby said:
At first glance I would use joules (Nxm) instead of eV since since other units are SI...

But since the plank constant is on the top and Boltzman on the bottom, the converting factor of eV to joules (1.6x10^-19) would cancel out anyway, so whether it's in eV or Joules should not matter.
 
Mr LoganC said:
But since the plank constant is on the top and Boltzman on the bottom, the converting factor of eV to joules (1.6x10^-19) would cancel out anyway, so whether it's in eV or Joules should not matter.

Actually, that IS the problem! I think you are correct, Bloby. Because the Plank constant is squared on the top, so there is still another 1.6x10^-19 to factor in there! I will give it a shot and see what I get for an answer!

****
It Worked! Thank you Bloby! Final answer was 16nK, which seems pretty reasonable to me for a Bose-Einstein Condensate.
 
Last edited:
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top