Calculating turbine RPM in a pipe with known air velocity and diameter

AI Thread Summary
To calculate turbine RPM in a closed pipe with known air velocity and diameter, it's essential to consider the resistive torque at the turbine's shaft, as lower resistance leads to higher RPM. The type of turbine, whether a propeller or fan blade, significantly influences RPM, particularly the pitch of the blades. A detailed calculation would involve modeling the lift on each blade and accounting for the dynamics of spinning blades affecting incoming fluid. Additionally, the interaction between the blades and airflow must be factored into the calculations. This discussion highlights the complexities involved in accurately determining turbine RPM in such conditions.
matth6197
Messages
1
Reaction score
1
Hello,

I am trying to calculate the turbine RPM for a turbine in a closed pipe. I know the air velocity and pipe diameter. Can this be done?
 
Engineering news on Phys.org
Welcome, @matth6197 !

The lighter the resistive torque or resistance at the shaft of the turbine the higher its rotational speed should be.
 
Is your turbine just a propeller or a fan blade. If so, then the pitch of the blades is the most significant factor in RPM.
 
  • Like
Likes Al-Layth and russ_watters
I hope somebody posts a detailed answer for how this calculation is done. I am dealing with a similar problem for wind turbines.

I expect you will somehow need to calculate the lift on each turbine blade multiply by the number of them and model it as a circular motion problem. but then you also need to take into account the change of lift per blade due to the fact the blade will spin, (whereas it was stationary at first) and also the effects of the spinning blades on the incoming fluid as well. All issues currently beyond my modelling abilities
 
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Back
Top