Calculus Integration of tln(t)dt: Homework Exercise and Methods

  • Thread starter Thread starter alexis36
  • Start date Start date
  • Tags Tags
    Integration
alexis36
Messages
8
Reaction score
0

Homework Statement


Integrate the following:


Homework Equations


tln(t)dt


The Attempt at a Solution



if i do intergration by parts:
u=t
u'=1
v'=ln(t)
v=1/x
and then use the formule, would that give me a correct answer?
Is there a simpler way?
 
Physics news on Phys.org
The antiderivative of ln(t) is not 1/t. That's the derivative.

When you have both a logarithm and polynomial term, make u the log term and dv be the polynomial.
 
Switch your substitutions, and it's solved.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top