Can a Trigonal Lattice with Specific Basis Represent a Simple Cubic Lattice?

  • Thread starter Thread starter Feynmanfan
  • Start date Start date
  • Tags Tags
    Crystallography
Feynmanfan
Messages
128
Reaction score
0

Homework Statement



I'm having nightmares with this problem, apparently simple (A&M Chapter 7 Prob 2).

I have to show that a trigonal primitive lattice, depending on its angle, can represent fcc or bcc. This I kind of figured it out intuitively. But the serious problem is number b), where I have to prove that a trigonal lattice of basis a_i with angle 60^0, and a two point basis +-\frac{1}{4}(a_1+a_2+a_3) can represent a simple cubic lattice.

Homework Equations



A trigonal primitive cell set of vector can be
$a_1=\frac{a}{2}(x+y)$
$a_2=\frac{a}{2}(z+y)$
$a_3=\frac{a}{2}(x+z)$

The definition of trigonal is, same angle between vectors and same length.
A simple cubic lattice is clear that it can be represented by a (x,y,z)

The Attempt at a Solution



Well... I added a1+a2+a3 and divided by 4 as the problem said but i can't understand why this represents a simple cubic lattice. In addition I am asked to guess what it represents if I divide by 8 instead of 4.

I guess I don't know what "two point basis means".

Thanks for your help!(I need it so badly...)
 
Last edited:
Physics news on Phys.org
Here is an intuitive way of reasoning through the problem. Consider the conventional unit cell of size a3 for the FCC lattice. Then the set ai you have mentioned are just primitive basis vectors for this lattice. Now -- mentally speaking -- subdivide the conventional cell into eight smaller "cubelets" by cutting the cell in half three times using planes perpendicular to the axes. Notice that each lattice point is at the corner of one of the cubelets. The problem calls on you to replace each lattice point by two new lattice points at positions plus or minus a/4( i + j + k ) from the original ones. Well.. this just sends the old (or FCC) lattice points into the centers of the cubelets. It should now be fairly clear that the new lattice is simple cubic with side length a/2.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top