First, do you mean 1 barg or 1 bar (as in, atmospheric)?
Second, do you mean 10 L/s at standard conditions (i.e. NL/s), or 10 L/s "actual" air flow (as in 10 L/s of pressurized air)
Third, when you say the pipe is 6.35 mm / .25 in, do you mean it's a 1/4" Sch. 40 pipe (that has an inside diameter of 9.2456 mm)?
Fourth, what's the length of pipe that the air will be traveling through?
Assuming your 10 L/s is FAD, or at normal conditions (not pressurized volume), That is .6 m3/min through a pipe with an ID of 9.2456 mm, which gives a normalized air velocity of ~149 m/s. That's less than half of the speed of sound, but it's still extremely high. Pressure losses for that air velocity are very high, which means that in order to sustain flow, the longer the pipe length, the higher the supply pressure will need to be. At 1 barg, you may be able to get that flow rate through a 2-3 meter long pipe, but you'll need significantly more pressure for longer lengths.