Can an Undergrad Design an Effective Ion Thruster?

AI Thread Summary
An undergraduate student is attempting to design an ion thruster for a research project, starting with an electron source to ionize Argon gas. The design involves a modified Crook's Tube with an aluminum foil membrane and an array of steel sewing needles. The student seeks methods to calculate the electric field at the surface of the needle array or a cone, facing challenges due to the curvature of the cone's tip. Suggestions highlight that the curvature radius is crucial for calculations, and a perfect cone's tip radius being zero complicates the analysis. The discussion also notes the durability challenges of ion thrusters and mentions relevant literature for further study.
gjtrash
Messages
4
Reaction score
0
Hello and thanks for taking a look

I'm an undergrad student that is trying to design and make a ion thruster for my research project. I know, I should of started with something simpler. The first part of this project is creating an electron source to provide the electron beam to ionize the Argon gas.
My design is basically a jerry-rigged Crook's Tube with an Aluminum Foil Membrane at one end.

I'm Using steel sowing needles that are grouped in arrays of 1, 3, 5, 10, 20 and 25. I've looked for material with lower work functions but I'm working of a budget of a taste more then zero. I've built a Full wave rectifier power box to convert a 15kV AV to DC with 24kV, .3μF capacitance smoother caps in parallel with the Anode needle array, and cathode membrane.

what I'm trying to find is a way or method to calculate the electric field/potential on the surface of a the needles, or for simpler modeling features, a metal cone. Cone Dimensions are Cylinder length 30mm, height of cone from cylinder to tip 2.5mm, radius of cylinder is 0.35mm.

I've worked with finding and calculating electric potential on the surface of cylinder's and spheres witch is pretty straight forward but with a cone I've hit the wall. I've tried using several methods with different answers to all. I know that as curvature increases that potential field increases and that is what makes it difficult to calculate.

any suggestions or advice would be greatly appreciated, excpecially any reading material on this type problem.

Thanks Again.
 
Engineering news on Phys.org


The field at the tip depends essentially on the curvature radius of the tip, not on the radii elsewhere. If you knew this radius, you could compute the field approximately as if the tip were a sphere.

A perfect cone won't give any sensible figure because its tip radius is zero.

The main difficulty of ion thrusters is to last. I doubt they use needles for that aim. AC induction in a low-pessure gas maybe?
 


Enthalpy said:
The field at the tip depends essentially on the curvature radius of the tip, not on the radii elsewhere. If you knew this radius, you could compute the field approximately as if the tip were a sphere.

A perfect cone won't give any sensible figure because its tip radius is zero.

The main difficulty of ion thrusters is to last. I doubt they use needles for that aim. AC induction in a low-pessure gas maybe?
thanks for the input. I'll try to play around with that to get a reasonable figure.

I've been reading and looking into this topic for a while and picked up a couple of books on it.
"Physics of ELectric Propulsion. bye Robert G Jahn." lot of information, most beyond me right now but that what makes if fun.

thanks again.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top