Knissp
- 72
- 0
Homework Statement
\int_0^1 (6t^2 (1+9t^2)^{1/2} dt)
Homework Equations
\int u dv = u v - \int v du
The Attempt at a Solution
\int_0^1 (6t^2 (1+9t^2)^{1/2} dt)
=6 * \int (t^2 (1+9t^2)^{1/2} dt)
= 6 * \int (t * t (1+9t^2)^{1/2} dt)
Let u = t; let dv = t (1+9t^2)^{1/2} dt;
then du = dt; and v = \int t (1+9t^2)^{1/2} dt
(using w-substitution:
w = 1+9t^2,
dw = 18t dt;
dw/18=dt;
\int t (1+9t^2)^{1/2} dt
=1/18 \int w^{1/2} dw = 1/18 * 2/3 w^{3/2} = w^{3/2} / 27 = (1+9t^2)^{3/2}/27
v = [(1+9t^2)^{3/2}/27
\int(u dv) = u v - \int (v du)
= t * (1+9t^2)^{3/2}/27 - \int ((1+9t^2)^{3/2}/27 dt)
now i need help integrating (1+9t^2)^{3/2}/27.