harrylentil said:
Can we make the assumptions that I want the spacecraft to have a main instrument chamber kept as cool as desired for a reasonably long time, and that it might be necessary to keep the craft with one side facing the sun (or a solution might require a rotation). So, to put numbers on it, if the near surface reaches 1,700 K the solution should require (1) the coolest part to kept at 300 K or (2) the coolest part to be kept at 3.5 K either until (a) the internal fuel runs out or (b) indefinitely.
why make wild assumptions about the craft ??
All the main info is on the NASA site for you to read ... here's the main guts of the heat shielding ...
July 6, 2018
Cutting-Edge Heat Shield Installed on NASA’s Parker Solar Probe
The launch of Parker Solar Probe, the mission that will get closer to the Sun than any human-made object has ever gone, is quickly approaching, and on June 27, 2018, Parker Solar Probe’s heat shield — called the Thermal Protection System, or TPS — was installed on the spacecraft .
A mission 60 years in the making, Parker Solar Probe will make a historic journey to the Sun’s corona, a region of the solar atmosphere. With the help of its revolutionary heat shield, now permanently attached to the spacecraft in preparation for its August 2018 launch, the spacecraft ’s orbit will carry it to within 4 million miles of the Sun's fiercely hot surface, where it will collect unprecedented data about the inner workings of the corona.
The eight-foot-diameter heat shield will safeguard everything within its umbra, the shadow it casts on the spacecraft . At Parker Solar Probe’s closest approach to the Sun, temperatures on the heat shield will reach nearly 2,500 degrees Fahrenheit, but the spacecraft and its instruments will be kept at a relatively comfortable temperature of about 85 degrees Fahrenheit.
The heat shield is made of two panels of superheated carbon-carbon composite sandwiching a lightweight 4.5-inch-thick carbon foam core. The Sun-facing side of the heat shield is also sprayed with a specially formulated white coating to reflect as much of the Sun’s energy away from the spacecraft as possible.
The heat shield itself weighs only about 160 pounds — here on Earth, the foam core is 97 percent air. Because Parker Solar Probe travels so fast — 430,000 miles per hour at its closest approach to the Sun, fast enough to travel from Philadelphia to Washington, D.C., in about one second — the shield and spacecraft have to be light to achieve the needed orbit.
https://www.nasa.gov/feature/goddar...shield-installed-on-nasa-s-parker-solar-probe
Dave