Can the radial component of the wave function satisfy the radial equation?

vst98
Messages
49
Reaction score
0

Homework Statement


Show that radial components of the continuum electron wave function
satisfies the radial equation:

{\left[\frac{-\hbar }{2m}\frac{1}{r^2}\frac{\partial }{\partial r}\left(r^2\frac{\partial }{\partial r}\right)+\frac{\hbar ^2l(l+1)}{2m<br /> r^2}-\frac{Z e^2}{r}\right]R=E R}

where:
E=(k*hbar)2/2m
R=Rkl(r)

Homework Equations


so, the radial component R is given as:

{R_{\text{kl}}(r)=\frac{C_{\text{kl}}}{(2l+1)!}(2{kr})^l\text{Exp}[-\text{ikr}]*F(i/k+l+1,2l+1;2\text{ikr})}

The Attempt at a Solution


First I have rewritten R as:

Rkl(r)= C rl Exp[-ikr] F[i/k + l + 1,2l+1;2ikr]

where in C is everything that does not depend on r.

Great, I was thinking this will be pretty straightforward to show.

My reasoning was to insert R in the above radial equation, take those derivatives and at the end I will be able the factorize R out, so that I'm left with something like
HR=AR where A is the energy.

It did not work out like that :smile:
After taking the derivatives I'm left with a mess and I don't see how to factorize R out.
I mean, derivatives of Exp[-ikr] give me back the same function (multiplied by constant) so I can factorize that out but rl and F give me problems after derivation.
Also I was looking at the properties of these confluent hypergeometric functions F
and tried to adjust them back to original function but without success.

Can someone say whether I'm on the right track trying to solve the problem like that or
have I completely missed the point ?
 
Physics news on Phys.org
Interesting problem. I would first try to relabel the confluent hypergeom function as u(r) and plug the solution into the original ODE. Then I'd be led to a second order ODE for u(r) which should have exactly the same solution with the confluent hypergeom function I'm given.
 
I'm not sure if I understood you well, but this is what I have tried:

Now R is given as:

Rkl(r)= C rl Exp[-ikr] u[r]

And a second order ODE that u[r] obeys is:

z\frac{d^{2}u}{dz^{^{2}}}+(b-z)\frac{du}{dz}-au=0

where u is u[r]~F[a,b,z]=F[i/k+l+1,2l+1,2ikr]

So, I should insert R the into radial equation and with the help of this ODE for u[r] somehow simplify the result, right ?
Ok, I focused here only on the result I get when acting on R with this part of the radial equation
\frac{1}{r^{2}}\frac{\partial }{\partial r}(r^{2}\frac{\partial }{\partial r})

the result after acting on R with this part is:
{c e^{-i k r} r^{-2+l} \left(\left(l+l^2-2 i k l r-k r (2 i+k r)\right) u[r]+r \left(2 (1+l-i k r) u&#039;[r]+r u&#039;&#039;[r]\right)\right)}

Now, I have tried to bring this expression(or a part of it) to form of ODE for u[r].
But when I adjust the coefficient that multiplies u''[r] so that I have 2ikr*u''[r] , which is required by the ODE for u[r] then the coefficient for u'[r] is not in a proper form anymore.
And the rest of the equation is also of no help since these are the only u''[r] and u'[r] terms.
So I'm stuck again :)
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top