courtrigrad
- 1,236
- 2
\int \frac{dx}{x\sqrt{a^{2}+x^{2}}}.
So, x = a\tan\theta, and dx = a\sec^{2}\thetha d\theta. When we substitute we get: \int\frac{a\sec^{2}\theta}{(a\tan\theta)(a\sec\theta}) which equals \frac{1}{a}\int \csc \theta d\theta. I know that \int \csc \theta d\theta = -\ln|\csc\theta + \cot\theta|. And \theta = \tan^{-1}(\frac{x}{a}). So I substitute this into the equation. How do we get from that to this:
(\frac{1}{a})\ln|\frac{x}{a+\sqrt{a^{2}+x^{2}}}
Thanks
So, x = a\tan\theta, and dx = a\sec^{2}\thetha d\theta. When we substitute we get: \int\frac{a\sec^{2}\theta}{(a\tan\theta)(a\sec\theta}) which equals \frac{1}{a}\int \csc \theta d\theta. I know that \int \csc \theta d\theta = -\ln|\csc\theta + \cot\theta|. And \theta = \tan^{-1}(\frac{x}{a}). So I substitute this into the equation. How do we get from that to this:
(\frac{1}{a})\ln|\frac{x}{a+\sqrt{a^{2}+x^{2}}}
Thanks
Last edited: