Central Density Function

  • #1
277
1

Homework Statement




-infinity<x<infinity
x> theta
f(x) = [itex] \frac{\lambda}{2}e^{-\lambda (x-\theta)} [/itex]

F(x) = [itex] \int_{-\infty}^x f(x) dx [/itex]

Homework Equations





The Attempt at a Solution


Homework Statement



[itex] \int \frac{\lambda}{2}e^{-\lambda (x-\theta)} dx [/itex]
= [itex] -\frac{1}{2}e^{-\lambda(x-\theta)} [/itex]

Insert the limits:
[itex] -\frac{1}{2}e^{-\lambda(x-\theta)} + \frac{1}{2}e^{-\lambda(-\infty-\theta)} [/itex]

= infinity.

The last part should not be infinity so can anyone see where I go wrong?
 
Last edited:
  • #2
You have defined f(x) for [itex]x>\theta[/itex]. Is it zero elsewhere? Should your lower limit be [itex]\theta[/itex]?
 
  • #3
Yes it should! Thanks

Insert the limits:
[itex] -\frac{1}{2}e^{-\lambda(x-\theta)} + \frac{1}{2}e^{-\lambda(\theta-\theta)} [/itex]
=
[itex] 1/2 -\frac{1}{2}e^{-\lambda(x-\theta)} [/itex]
 
Last edited:
  • #4
You mean [itex]e^{-\lambda(\theta- \theta)}[/itex], not [itex]e^{-\lambda(-\theta- \theta)}[/itex]
 
  • #5
Thanks, corrected it now.
 

Suggested for: Central Density Function

Replies
6
Views
602
Replies
11
Views
799
Replies
7
Views
387
Replies
25
Views
769
Replies
3
Views
322
Replies
4
Views
279
Replies
9
Views
289
Back
Top