Centrifugal Pump: Water Pressure at 50m & 4 Bar Gauge

AI Thread Summary
A centrifugal pump is used to maintain water pressure at 4 bar gauge while pumping water from a height of 50 m into a vessel. When the valve is opened to atmospheric air, the pressure at the valve is approximately 0 absolute, causing the water level in the tank to drop. The extent of the drop depends on whether there is compressed air at the top of the tank; with compressed air, the water level may fall about 10 m, while without it, the drop will be minimal, and the tank pressure will increase to 5 bar gauge. The pump is necessary for controlled flooding of the vessel, allowing for precise management of water flow rates. Additionally, further compressed air can be introduced to facilitate dewatering processes.
Fellps
Messages
3
Reaction score
0
I have a centrifugal pump 50 m above a vessel, I’m pumping water in at 4 bar gauge into this vessel. I then close a valve to cease pumping ensuring no air enters the system.​
My question is, if I now open that same valve to atmospheric air this time, will the water exit from the pipe through the valve at a 4 bar pressure differential. Or will it, the water, go down the pipe to 40 m from its originally closed valve position of 50 m.
 
Engineering news on Phys.org
Fellps said:
I have a centrifugal pump 50 m above a vessel, I’m pumping water in at 4 bar gauge into this vessel.​
Is the 4bar measured at the valve/pump or in the tank?
 
russ_watters said:
Is the 4bar measured at the valve/pump or in the tank?
At the tank
 
Fellps said:
At the tank
Then the pressure at the valve is roughly 0 absolute and opening the valve to atmosphere will cause the water level to fall. How much it falls will depend on how the tank is being pressurized. If there is compressed air at the top of the tank, the water level will drop about 10m. If there is no air in the tank and it is just solid water, it will only drop a little and the tank pressure will increase to 5 bar gauge since water is incompressible.

...of course, that begs the question: why do you need a pump to begin with? Why couldn't you just let gravity fill the tank?
 
russ_watters said:
Then the pressure at the valve is roughly 0 absolute and opening the valve to atmosphere will cause the water level to fall. How much it falls will depend on how the tank is being pressurized. If there is compressed air at the top of the tank, the water level will drop about 10m. If there is no air in the tank and it is just solid water, it will only drop a little and the tank pressure will increase to 5 bar gauge since water is incompressible.

...of course, that begs the question: why do you need a pump to begin with? Why couldn't you just let gravity fill the tank?
Thank you very much, the need for the pump comes from the need for control. The vessel must be remotley flooded at a controlled rate.

The vessel will contain compressed air. Should a dewatering process be required, further compressed air will be pumped into the vessel to 'push' the water the extra 10 m and induce a flow rate
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top