Chain rule for several variables: Implicit diff.

soe236
Messages
22
Reaction score
0

Homework Statement


Z is defined implicitly as a function of x,y by equation (z^2)x + 3xy^2 + e^((y^2)z) = 4. Find dz/dx

Homework Equations


dz/dx = -Fx/Fz

The Attempt at a Solution


Fx= z^2 + 3y^2
Fz=2zx+(y^2)e^((y^2)z)
dz/dx= (z^2+3y^2)/[2zx+(y^2)e^((y^2)z)]

I'm not sure if I used the partial derivatives correctly, and a little unsure about the procedure as well. Someone please check that and tell me if it's correct. Thankyou
 
Physics news on Phys.org
soe236 said:
(z^2)x + 3xy^2 + e^((y^2)z) = 4. Find dz/dx

Fx= z^2 + 3y^2
Fz=2zx+(y^2)e^((y^2)z)
dz/dx= (z^2+3y^2)/[2zx+(y^2)e^((y^2)z)]

Hi soe236!

Looks good to me. :biggrin:
 
Thank you!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top