(g o f)'(4)
= g'(f(4))*f'(4) by chain rule
= g'(8)*f'(4) since f(4) = 8
= 3*f'(4) since g'(8) = 3
And that's all you can do, since they don't tell you what f'(4) is. I suspect they do, and you just copied out the question wrong. Also, why have you given "g(4) = 10" twice?
Anyways, the way to setting up the problem is this:
Given a problem, "find X", write:
X
= A (by some theorem, or given fact, or logical inference)
= B (again, give justification)
= C (justification)
= D (justification)
until you get some answer D that you think the teacher will like, like an actual numeral. In this case, your X is (f o g)'(4), and your C is something like 3f'(4). You want a numeral for your D, but you can't get it yet from C because they haven't given you enough information (or you copied the question wrong).