Evaluating Partial Derivative of g w.r.t. Theta at (2*sqrt(2),pi/4)

  • Thread starter Thread starter snoggerT
  • Start date Start date
  • Tags Tags
    Chain Chain rule
snoggerT
Messages
183
Reaction score
0
use chain rule to evaluate partial derivative of g with respect to theta at (r,[theta])=(2*sqrt(2),pi/4), where g(x,y) = 1/(x+y^2), x=rsin[theta] and y=rcos[theta]


r^2=x^2+y^2 and tan[theta]=y/x

The Attempt at a Solution



I understand how to use the chain rule for partial derivatives, but I can't seem to figure out any of the problems that use polar coordinates. please help.
 
Physics news on Phys.org
use
x=rcos(theta)
y=rsin(theta)
 
m_s_a said:
use
x=rcos(theta)
y=rsin(theta)

- so for every x/y in the equation I get, plug in the polar coordinate for them?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top