Effort-Saving Angle for Pulling Sled on Slope: Challenging Physics Homework

  • Thread starter Thread starter jgens
  • Start date Start date
  • Tags Tags
    Physics
AI Thread Summary
The discussion revolves around determining the optimal angle, φ, at which a boy should pull his sled up a slope to minimize effort, given a coefficient of friction of 0.10. The user presents a mathematical approach involving force equations and relationships between normal force, gravitational force, and friction. They derive a formula for φ based on the slope angle θ and the coefficient of friction. The user also questions whether further clarification of their work would be helpful for understanding. The thread emphasizes the importance of correctly applying physics principles to solve the problem efficiently.
jgens
Gold Member
Messages
1,575
Reaction score
50

Homework Statement


A boy pulls his sled up a snowy slope of angle θ from the horizontal. If the coefficient of friction between the slope and sled is 0.10, at what angle, φ, from the slope should the boy pull the sled so that he exerts the least effort?


Homework Equations



N/A

The Attempt at a Solution



Well, I don’t think this is the correct approach to the problem but here it goes:

∑Fy = Fn + Fpsin(φ) - mgcos(θ) = 0 and ∑Fx = Fpcos(φ) - mgsin(θ) - μFn = 0 which, through some algebra, Fp = (mgcos(θ) - Fn)/sin(φ) = (mgsin(θ) + μFn)/cos(φ) and dividing the two equations results with 1 = tan(φ)(mgsin(θ) + μFn)/(mgcos(θ) - Fn) ⇒ cot(φ) = (mg sin(θ) + μFn)/(mgcos(θ) - Fn). Also, since the net force acting one the object is zero, the net work is zero as well; therefore, mgh = μFn*s or similarly mgsin(θ) = μFn. Applying this relationship I find cot(φ) = (2μFn)/(μFncot(θ) - Fn) = 2μ/(μcot(θ) - 1) which ultimately yields φ = cot^(-1)[2μ/(μcot(θ) - 1)] = tan^(-1)[(μcot(θ) - 1)/2μ].

Thanks.
 
Physics news on Phys.org
Homework Helpers: If I were to clarify my work, would that be beneficial perhaps?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top