Change of variables jacobian limits

ahmed markhoos
Messages
49
Reaction score
2
## \int_{0}^{∞}\int_{0}^{∞} \frac{x^2+y^2}{1+(x^2-y^2)^2} e^{-2xy} dxdy ##

##u= x^2-y^2##
##v=2xy##I tried to find the jacobian and the area elements,

I found it to be ## dA = \frac{1}{v} du dv ##

I'm having problem finding the limits of u & v and getting rid of ##x^{2}+y^{2}##.
 
Physics news on Phys.org
------------- by mistake
 
I could be wrong about this, but I think you should try a polar transformation. All the ##x^2## and ##y^2## terms seem to hint at this.

$$\iint_D \frac{x^2 + y^2}{1 + (x^2 - y^2)^2} e^{-2xy} dA = \iint_{D'} \frac{r^2}{1 + (r^2 \text{cos}(2 \theta))^2} e^{-r^2 sin(2 \theta)} r dr d\theta$$

Where ##D'## is the part of ##D## inside the circle ##x^2 + y^2 \leq c^2##. So ##0 \leq r \leq c## and ##0 \leq \theta \leq \frac{\pi}{2}## define the limits of ##D'##.

Then you want to consider when ##c \to \infty##, so ##D'## becomes infinitely large.
 
Last edited:
  • Like
Likes ahmed markhoos
Zondrina said:
I could be wrong about this, but I think you should try a polar transformation. All the ##x^2## and ##y^2## terms seem to hint at this.

$$\iint_D \frac{x^2 + y^2}{1 + (x^2 - y^2)^2} e^{-2xy} dA = \iint_{D'} \frac{r^2}{1 + (r^2 \text{cos}(2 \theta))^2} e^{-r^2 sin(2 \theta)} r dr d\theta$$

Where ##D'## is the part of ##D## inside the circle ##x^2 + y^2 \leq c^2##. So ##0 \leq r \leq c## and ##0 \leq \theta \leq \frac{\pi}{2}## define the limits of ##D'##.

Then you want to consider when ##c \to \infty##, so ##D'## becomes infinitely large.

Hmmm, seems good. But the question require using Jacobian determinant.
 
ahmed markhoos said:
Hmmm, seems good. But the question require using Jacobian determinant.

When changing to polar co-ordinates:

$$dA = \left| J \right| dA' = \left| J \right| dr d\theta = r \space dr d\theta$$

The Jacobian is just ##r##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top