Change of variables, transformations, reversibility

Jamin2112
Messages
973
Reaction score
12

Homework Statement



Theorem. The change of variables is reversible near (u0,v0) (with continuous partial derivatives for the reverse functions) if and only if the Jacobian of the transformation is nonzero at (u0,v0).

1. Consider the change of variables x=x(u,v)=uv and y=y(u,v)=u2-v2.

(a). Find the coordinates (u,v) that go to a common value (x0,y0) under than change of variables. (That is, find the points of intersection of the level curves x0=x(u,v) and y0=y(u,v) in the u-v plane.) Generally, this transformation transforms how many points in the u-v plane to an image point in the x-y plane?

Homework Equations

The theorem, I suppose.

The Attempt at a Solution



So, I want to see what happens when I fix x and y. Let's say (x,y)=(x0,y0).

x0=uv
y0=u2-v2.

Graphing this in the u-v plane would look like a hyperbola, v=x0/u, that intersects a square root thingy, v= +/- √(u2-y0). The two curves should intersect at 2 points, meaning that we don't have a 1-1 transformation. But I can't find the coordinates (u,v) of this intersection. I can simplify it to x02=u2(u2-y0), but can't solve for u from there.

I have this problem on every other problem on this assignment. For example, the next problem has x=uv, y=u3+y3. How do I solve for u,v? Seems like I would need to know the formula for solving a 3rd degree polynomial. Or is there an easier way?

Thanks in advance. Expound as much as possible.
 
Physics news on Phys.org
bump (c'mon, guys)
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top