nothingness00
- 2
- 0
Homework Statement
Change the order of the limits of integration of the following double integral and evaluate.
Homework Equations
\int_{0}^\frac{\pi}{2} \int_{0}^{cos(\theta)} cos(\theta)\,dr\,d\theta
The Attempt at a Solution
Evaluating as it is, I arrive an answer of \frac{\pi}{4}.
I know the region to be integrated is the semicircle bounded by the polar axis, with corner points at r = 0, and r = 1, with a height of 1/2. I know that normally, in the cartesian case, to change the order of integration requires the limits to be written from y(x) to x(y), with the x or y intervals adjust accordingly.
Thus, for this problem, the original region is bounded by:
0<r<cos(\theta) and 0<\theta<\frac{\pi}{2}.
Changing the form, I would write,
0<\theta<cos^{-1}(r) and 0<r<1
Trying to evaluate in this manner, I end up at
\int_{0}^1 sin(cos^{-1}(r))\,dr,
after which I cannot go further. I have very little experience of changing limit orders in the polar case. Any hints would be appreciated!
Last edited: